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A Survey on Adaptive Random Testing
Rubing Huang, Weifeng Sun, Yinyin Xu, Haibo Chen, Dave Towey, Xin Xia

Abstract—Random testing (RT) is a well-studied testing method that has been widely applied to the testing of many applications,
including embedded software systems, SQL database systems, and Android applications. Adaptive random testing (ART) aims to
enhance RT’s failure-detection ability by more evenly spreading the test cases over the input domain. Since its introduction in 2001,
there have been many contributions to the development of ART, including various approaches, implementations, assessment and
evaluation methods, and applications. This paper provides a comprehensive survey on ART, classifying techniques, summarizing
application areas, and analyzing experimental evaluations. This paper also addresses some misconceptions about ART, and identifies
open research challenges to be further investigated in the future work.

Index Terms—Adaptive random testing, random testing, survey.

F

1 INTRODUCTION

SOFTWARE testing is a popular technique used to assess
and assure the quality of the (software) system under

test (SUT). One fundamental testing approach involves sim-
ply constructing test cases in a random manner from the
input domain (the set of all possible program inputs): This
approach is called random testing (RT) [1]. RT may be the
only testing approach used not only for operational testing,
where the software reliability is estimated, but also for
debug testing, where software failures are targeted with the
purpose of removing the underlying bugs1 [3]. Although
conceptually very simple, RT has been used in the testing of
many different environments and systems, including: Win-
dows NT applications [4]; embedded software systems [5];
SQL database systems [6]; and Android applications [7].

RT has generated a lot of discussion and controversy,
notably in the context of its effectiveness as a debug testing
method [8]. Many approaches have been proposed to en-
hance the RT’s testing effectiveness, especially for failure
detection. Adaptive random testing (ART) [9] is one such
proposed improvement over RT. ART was motivated by
observations reported independently by many researchers
from multiple different areas regarding the behavior and
patterns of software failures: Program inputs that trigger
failures (failure-causing inputs) tend to cluster into contigu-
ous regions (failure regions) [10]–[14]. Furthermore, if the
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1. According to the IEEE [2], the relationship amongst mistake, fault,
bug, defect, failure and error can be briefly explained as follows: A
software developer makes a mistake, which may introduce a fault
(defect or bug) in the software. When a fault is encountered, a failure
may be produced, i.e., the software behaves unexpectedly. “An error
is the difference between a computed, observed, or measured value
or condition and the true, specified, or theoretically correct value or
condition.” [2, p.128].

failure regions are contiguous, then it follows that non-
failure regions should also be adjacent throughout the input
domain. Specifically: if a test case tc is a failure-causing
input, then its neighbors have a high probability of also
being failure-causing; similarly, if tc is not failure-causing,
then its neighbors have a high probability of also not being
failure-causing. In other words, a program input that is far
away from non-failure-causing inputs may have a higher
probability of causing failure than the neighboring test
inputs. Based on this, ART aims to achieve an even spread
of (random) test cases over the input domain. ART generally
involves of two processes: one for the random generation of
test inputs; and another to ensure an even-spreading of the
inputs throughout the input domain [15].

ART’s invention and appearance in the literature can be
traced back to a journal paper by Chen et al., published
in 2001 [9]. Some papers present overviews of ART, but are
either preliminary, or do not make ART the main focus [15]–
[20]. For example, to draw attention to the fundamental role
of diversity in test case selection strategies, Chen et al. [15]
presented a synthesis of some of the most important ART
research results before 2010. Similarly, Anand et al. [18]
presented an orchestrated survey of the most popular tech-
niques for automatic test case generation that included a
brief report on the then state-of-the-art of ART. Roslina et
al. [19] also conducted a study of ART techniques based on
61 papers. Consequently, there is currently no up-to-date,
exhaustive survey analyzing both the state-of-the-art and
new potential research directions of ART. This paper fills
this gap in the literature.

In this paper, we present a comprehensive survey on
ART covering 140 papers published between 2001 and 2017.
The paper includes the following: (1) a summary and analy-
sis of the selected 140 papers; (2) a description, classification,
and summary of the techniques used to derive the main
ART strategies; (3) a summary of the application and testing
domains in which ART has been applied; (4) an analysis of
the empirical studies conducted into ART; (5) a discussion of
some misconceptions surrounding ART; and (6) a summary
of some open research challenges that should be addressed
in future ART work. To the best of our knowledge, this is
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the first large-scale and comprehensive survey on ART.
The rest of this paper is organized as follows. Section 2

briefly introduces the preliminaries and gives an overview
of ART. Section 3 discusses this paper’s literature review
methodology. Section 4 examines the evolution and distri-
bution of ART studies. Section 5 analyzes the-state-of-the-
art of ART techniques. Section 6 presents the situations and
problems to which ART has been applied. Section 7 gives
a detailed analysis of the various empirical evaluations of
ART. Section 8 discusses some misconceptions. Section 9
provides some potential challenges to be addressed in future
work. Finally, Section 10 concludes the paper.

2 BACKGROUND

This section presents some preliminary concepts, and pro-
vides an introduction to ART.

2.1 Preliminaries

For a given a SUT, many software testing methods have
been implemented according to the following four steps: (1)
define the testing objectives; (2) choose inputs for the SUT
(test cases); (3) run the SUT with these test cases; and (4)
analyze the results. Each test case is selected from the entire
set of all possible inputs that form the input domain. When
the SUT’s output or behavior when executing a test case tc
is not as expected (determined by the test oracle [21]), then
the test is considered to fail, otherwise it is passes. When a
test fails, tc is called a failure-causing input.

Given some faulty software, two fundamental features
can be used to describe the properties of the fault(s):
the failure rate (the number of failure-causing inputs as a
proportion of all possible inputs); and the failure pattern
(the distributions of failure-causing inputs across the input
domain, including their geometric shapes and locations).
Before testing, these two features are fixed, but unknown.

Chan et al. [22] identified three broad categories of
failure patterns: strip, block and point. Fig. 1 illustrates these
three failure patterns in a two-dimensional input domain
(the bounding box represents the input domain boundaries;
and the black strip, block, or dots represent the failure-
causing inputs). Previous studies have indicated that strip
and block patterns are more commonly encountered than
point patterns [10]–[14].

Generally speaking, failure regions are identified or con-
structed in empirical studies (experiments or simulations).
Experiments involve real faults or mutants (seeded using
mutation testing [23]) in real-life subject programs. Simula-
tions, in contrast, create artificial failure regions using pre-
defined values for the dimensionality d and failure rate θ,
and a predetermined failure pattern type: A d-dimensional
unit hypercube is often used to simulate the input domain
D (D = {(x1, x2, · · · , xd)|0 ≤ x1, x2, · · · , xd < 1.0}), with
the failure regions randomly placed insideD, and their sizes
and shapes determined by θ and the selected failure pattern,
respectively. During testing, when a generated test case is
inside a failure region, a failure is said to be detected.

2.2 Adaptive Random Testing (ART)
ART is a family of testing methods, with many different
implementations based on various intuitions and criteria. In
this section, we present an ART implementation to illustrate
the fundamental principles.

The first implementation of ART was the Fixed-Size-
Candidate-Set (FSCS) [9] version, which makes use of the
concept of distance between test inputs. FSCS uses two sets
of test cases: the candidate set C; and the executed set, E. C
is a set of k tests randomly generated from the input domain
(according to the specific distribution); and E is the set of
those inputs that have already been executed, but without
causing any failure. E is initially empty. The first test input
is generated randomly. In each iteration of FSCS ART, an
element from C is selected as the next test case such that it
is farthest away from all previously executed tests (those in
E). Formally, the element c′ from C is chosen as the next
test case such that it satisfies the following constraint:

∀c ∈ C, min
e∈E

dist(c′, e) ≥ min
e∈E

dist(c, e), (2.1)

where dist(x, y) is a function to measure the distance be-
tween two test inputs x and y. The Euclidean distance is
typically used in dist(x, y) for numerical input domains.

Fig. 2 illustrates the FSCS process in a two-dimensional
input domain: Suppose that there are three previously ex-
ecuted test cases, t1, t2, and t3 (i.e., E = {t1, t2, t3}), and
two randomly generated test candidates, c1 and c2 (i.e.,
C = {c1, c2}) (Fig. 2(a)). To select the next test case from
C, the distance between each candidate and each previously
executed each test case in E is calculated, and the minimum

(a) Strip pattern (b) Block pattern (c) Point pattern

Fig. 1. Three types of failure patterns in the two-dimensional input domain.
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Fig. 2. Illustration of FSCS in a two-dimensional input domain.

value for each candidate is recorded as the fitness value
(Fig. 2(b)). Finally, the candidate with the maximum fitness
value is selected to be the next test case (Fig. 2(c)): in this
example, c2 is used for testing (t4 = c2).

As Chen et al. have explained [15], ART aims to more
evenly spread randomly generated test cases than RT across
the input domain. In other words, ART attempts to generate
more diverse test cases than RT.

3 METHODOLOGY

Guided by Kitchenham and Charters [24] and Petersen et
al. [25], in this paper, we followed a structured and system-
atic method to perform the ART survey. We also referred to
recent survey papers on other software engineering topics,
including: mutation analysis [23]; metamorphic testing [26],
[27]; constrained interaction testing [28]; and test case prior-
itization for regression testing [29]. The detailed methodol-
ogy used is described in this section.

3.1 Research Questions
The goal of this survey paper is to structure and categorize
the available ART details and evidence. To achieve this, we
used the following research questions (RQs):

• RQ1: What has been the evolution and distribution of
ART topics in the published studies?

• RQ2: What different ART strategies and approaches exist?
• RQ3: In what domains and applications has ART been

applied?
• RQ4: How have empirical evaluations in ART studies

been performed?
• RQ5: What misconceptions surrounding ART exist?
• RQ6: What are the remaining challenges and other future

ART work?

The answer to RQ1 will provide an overview of the
published ART papers. RQ2 will identify the state-of-the-
art in ART strategies and techniques, giving a description,
summary, and classification. RQ3 will identify where and
how ART has been applied. RQ4 will explore how the
various ART studies involving simulations and experiments
with real programs were conducted and evaluated. RQ5
will examine common ART misconceptions, and, finally,
RQ6 will identify some remaining challenges and potential
research opportunities.

3.2 Literature Search and Selection

Following previous survey studies [26], [28], [29], we also
selected the following five online literature repositories be-
longing to publishers of technical research:

• ACM Digital Library
• Elsevier Science Direct
• IEEE Xplore Digital Library
• Springer Online Library
• Wiley Online Library

The choice of these repositories was influenced by the fact
that a number of important journal articles about ART are
available through Elsevier Science Direct, Springer Online
Library, and Wiley Online Library. Also, ACM Digital Li-
brary and IEEE Xplore not only offer articles from confer-
ences, symposia, and workshops, but also provide access to
some important relevant journals.

After determining the literature repositories, each repos-
itory was searched using the exact phrase “adaptive random
testing” and for titles or keywords containing “random
test”. To avoid missing papers that were not included in
these five repositories, we augmented the set of papers
using a search in the Google Scholar database with the
phrase “adaptive random testing” as the search string2. The
results were combined to form the candidate set of pub-
lished studies shown in Table 1. Duplicates were removed,
and then, to further reduce the candidate set size, we then
applied the following exclusion criteria:

1) Studies not written in English.

2. The search was performed on May 1st, 2018.

TABLE 1
Initial Number of Papers for Each Search Engine

Search Engine Studies
ACM Digital Library 29
Elsevier Science Direct 57
IEEE Xplore Digital Library 60
Springer Online Library 89
Wiley Online Library 31
Google Scholar 1010
Total 1276
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TABLE 2
Data Collection for Research Questions

RQs Type of Data Extracted

RQ1 Fundamental information for each paper (publication year,
type of paper, author name, and affiliation).

RQ2 Motivation, description, and analysis of each technique.
RQ3 Language, function, and environment for each application.

RQ4 Simulation details, subject programs, evaluation metrics,
fault types, and analysis.

RQ5 Current misconception details.
RQ6 Details of remaining challenges.

2) Studies not related to the field of computer science.
3) Studies not related to ART.
4) Books, book chapters, or technical reports (most of

which have been published as articles).
5) Master or Ph.D. theses.
6) Keynote records (because, generally, these are on-

ly extremely brief summaries or overviews — e.g.,
Chen’s keynote at the 8th International Conference
on Quality Software [30]).

7) Studies without a full-text.

Removal of duplicates and application of the exclusion
criteria reduced the initial 1,276 candidate studies to 138
published papers. Finally, a snowballing process [25] was
conducted by checking the references of the selected 138
papers, resulting in the addition of two more papers. In
total, 140 publications (primary studies) were selected for
inclusion in the survey.

We acknowledge the apparent infeasibility of finding all
ART papers through our search. However, we are confident
that we have included the majority of relevant published
papers, and that our survey provides the overall trends and
the-state-of-the-art of ART.

3.3 Data Extraction and Collection

All 140 primary studies were carefully read and inspected,
with data extracted according to our research questions.
As summarized in Table 2, we identified the following
information from each study: motivation, contribution, em-
pirical evaluation details, misconceptions, and remaining
challenges. To avoid missing information and reduce error
as much as possible, this process was performed by two

different co-authors, and subsequently verified by the other
co-authors at least twice.

4 ANSWER TO RQ1: WHAT HAS BEEN THE EVO-
LUTION AND DISTRIBUTION OF ART TOPICS IN THE
PUBLISHED STUDIES?
In this section, we address RQ1 by summarizing the primary
studies according to publication trends, authors, venues,
and types of contributions to ART.

4.1 Publication Trends

Fig. 3 presents the ART publication trends between January
1st, 2001 and December 31st, 2017, with Fig. 3(a) showing
the number of publications each year, and Fig. 3(b) showing
the cumulative number. It can be observed that, after the
first three years there are at least six publications per year,
with the number reaching a peak in 2006. Furthermore, since
2009, the number of publications each year has remained
relatively fixed, ranging from seven to 10. An analysis of
the cumulative publications (Fig. 3(b)) shows that a line
function with high determination coefficient (R2 = 0.9924)
can be identified. This indicates that the topic of ART has
been experiencing a strong linear growth, attracting contin-
ued interest and showing healthy development. Following
this trend, it is anticipated that there will be about 180 ART
papers by 2021, two decades after its appearance in Chen et
al. [9].

4.2 Researchers and Organizations

Based on the 140 primary studies, 167 ART authors were
identified, representing 82 different affiliations. Table 3 lists
the top 10 ART authors and their most recent affiliation
(with country or region). It is clear that T. Y. Chen, from
Swinburne University of Technology in Australia, is the
most prolific ART author, with 62 papers.

4.3 Geographical Distribution of Publications

We examined the geographical distribution of the 140 publi-
cations according to the affiliation country of the first author,
as shown in Table 4. We found that all primary studies could
be associated with a total of 18 different countries or regions,
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Fig. 3. ART papers published between January 1st 2001 and December 31st 2017.
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TABLE 3
Top Ten ART Authors

Rank Name Current Affiliation Country or Region Papers
1. T. Y. Chen Swinburne University of Technology Australia 62
2. F.-C. Kuo Swinburne University of Technology Australia 35
3. H. Liu Victoria University Australia 19
4. R. G. Merkel Monash University Australia 15
5. D. Towey University of Nottingham Ningbo China PRC 15
6. J. Mayer Ulm University Germany 13
7. K. P. Chan The University of Hong Kong Hong Kong 10
8. Z. Q. Zhou University of Wollongong Australia 9
9. R. Huang Jiangsu University PRC 8

10. L. C. Briand University of Luxembourg Luxembourg 7

with Australia ranking first, followed by the People’s Re-
public of China (PRC). Overall, about 41% of ART papers
came from Asia; 32% from Oceania; 19% from Europe;
and about 8% from America. This distribution of papers
suggests that the ART community may only be represented
by a modest number of countries spread throughout the
world.

4.4 Distribution of Publication Venues
The 140 primary studies under consideration were pub-
lished in 72 different venues (41 conferences or symposia,
20 journals, and 11 workshops). Fig. 4 illustrates the dis-
tribution of publication venues, with Fig. 4(a) showing the
overall venue distribution, and Fig. 4(b) giving the venue
distribution per year. As Fig. 4(a) shows, most papers have
been published in conferences or symposia proceedings
(57%), followed by journals (30%), and then workshops
(13%). Fig. 4(b) shows that, between 2002 and 2012, most
ART publications each year were conference and sympo-
sium papers, followed by journals and workshops. Fig. 4(b)
also shows that, since 2012, this trend has changed, with
the number of journal papers per year increasing, usually
outnumbering the conference papers. The workshop papers
generally form the least number of publications each year.

Table 5 lists the ranking of publication venues where at
least three ART papers have appeared. Most of these venues
are well-known and highly regarded in the field of software
engineering or software testing.

TABLE 4
Geographical Distribution of Publications

Rank Country or Region Papers
1. Australia 45
2. PRC 30
3. Hong Kong 13
4. Germany 13
5. Norway 6
6. United States 5
7. Canada 4
8. United Kingdom 4
9. Malaysia 3

10. Iran 3
11. Indonesia 3
12. Japan 2
13. Switzerland 2
14. Brazil 2
15. Korea 2
16. India 1
17. Italy 1
18. Luxembourg 1

4.5 Types of Contributions
Fig. 5 categorizes the primary studies according to main
contribution (Fig. 5(a)) and research topic (Fig. 5(b))3.

3. If a paper has multiple types of contributions or research topics,
then only the main contribution or topic is identified.
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Fig. 4. Venue distribution for ART papers.
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TABLE 5
Top Venues with a Minimum of Three ART Papers

Rank Acronym Full name Papers
1. QSIC International Conference on Quality Software 11
2. SEKE International Conference on Software Engineering and Knowledge Engineering 8
3. JSS Journal of Systems and Software 7
4. COMPSAC Annual Computer Software and Applications Conference 6
5. IEEE-TR IEEE Transactions on Reliability 5
6. SAC ACM Symposium on Applied Computing 5
7. RT International Workshop on Random Testing 5
8. ASE International Conference on Automated Software Engineering 4
9. IST Information and Software Technology 4

10. TSE IEEE Transactions on Software Engineering 3
11. TOSEM ACM Transactions on Software Engineering and Methodology 3
12. TOC IEEE Transactions on Computers 3
13. Ada-Europe Ada-Europe International Conference on Reliable Software Technologies 3
14. APSEC Asia-Pacific Software Engineering Conference 3
15. ICST International Conference on Software Testing, Verification and Validation 3

As Fig. 5(a) shows, the main contribution of 43% of the
studies was to present new ART techniques or methodolo-
gies, 25% were case studies, and 24% were assessments and
empirical studies. 4% of studies were surveys or overviews
of ART, and the main contribution of five primary studies
(4%) was to present a tool.

Fig. 5(b) shows that the primary research topic of 10% of
the studies was about basic ART approaches. The effective-
ness and efficiency enhancement of ART approaches were
the focus of 29% and 7%, respectively; and application and
assessment of ART were 27% and 23%, respectively. Finally,
4% of the papers report on techniques, achievements, and
research directions.

Summary of answers to RQ1:

1) ART has attracted sustained interest, with the topic
showing healthy development.

2) Over 160 ART authors have been identified, represent-
ing more than 80 different affiliations, with T. Y. Chen
being the most prolific.

3) Primary studies have come from 18 countries or regions,
with Australia ranking first, followed by the PRC (Peo-
ple’s Republic of China).

4) Most studies were published at conferences and sym-
posia, followed by journals, and workshops.

5) The main contribution of most primary studies was to
propose a new technique. The most popular research
topics have been ART effectiveness enhancement, appli-
cation, and assessment.
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Fig. 5. Distribution of primary studies by main contribution and research topic.
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5 ANSWER TO RQ2: WHAT DIFFERENT ART S-
TRATEGIES AND APPROACHES EXIST?
In this section, we present the state-of-the-art of ART ap-
proaches, including a description, classification, and sum-
mary of their strengths and weaknesses.

ART attempts to spread test cases evenly over the entire
input domain [15], which should result in a better failure
detection ability [31]. There are two basic rationales to
achieving this even spread of test cases:

Rationale 1: New test cases should be far away from
previously executed, non-failure-causing test cases. As dis-
cussed in the literature [10]–[14], failure regions tend to be
contiguous, which means that new test cases farther away
from those already executed (but without causing failure)
should have a higher probability of being failure-causing.

Rationale 2: New test cases should contribute to a
good distribution of all test cases over the entire input
domain. Previous studies [31] have empirically determined
that better test case distributions result in better failure
detection ability.

Discrepancy is a metric commonly used to measure the
equidistribution of sample inputs [31], with lower values
indicating better distributions. The discrepancy of a test set
T is calculated as:

Discrepancy(T ) = max
1≤i≤m

∣∣∣∣ |Ti|
|T |
− |Di|
|D|

∣∣∣∣, (5.1)

whereD1,D2, · · · ,Dm are m randomly defined subdomain-
s of the input domain D; and T1, T2, · · ·Tm are the corre-
sponding subsets of T , such that each Ti (i = 1, 2, · · · ,m) is
in Di. Discrepancy checks whether or not the number of test
cases in a subdomain is proportionate to the relative size of
the subdomain area — larger subdomains should have more
test cases; and smaller ones should have relatively fewer.

Both Rationale 1 and Rationale 2 achieve a degree of
diversity of test cases over the input domain [15]. Based
on these rationales, many strategies have been proposed:
Select-Test-From-Candidates Strategy (STFCS), Partitioning-
Based Strategy (PBS), Test-Profile-Based Strategy (TPBS), Quasi-
Random Strategy (QRS), Search-Based Strategy (SBS), and
Hybrid-Based Strategy (HBS).

5.1 Select-Test-From-Candidates Strategy
The Select-Test-From-Candidates Strategy (STFCS) chooses the
next test case from a set of candidates based on some criteria
or evaluation involving the previously executed test cases.

5.1.1 Framework
Fig. 6 presents a pseudocode framework for STFCS,
showing two main components: the random-candidate-set-
construction, and test-case-selection. The STFCS framework
maintains two sets of test cases: the candidate set (C) of
randomly generated candidate test cases; and the executed
set (E) of those test cases already executed (without causing
failure). The first test case is selected randomly from the
input domain D according to a uniform distribution —
all inputs in D have equal probability of selection. The
test case is then applied to the SUT, and the output and
behavior are examined to confirm whether or not a failure
has been caused. Until a stopping condition is satisfied

1: Set C ← {}, and E ← {}
2: Randomly generate a test case tc from D, according

to uniform distribution
3: Add tc into E, i.e., E ← E

∪
{tc}

4: while The stopping condition is not satisfied do
5: Randomly choose a specific number of elements

fromD to form C according to the specific criterion
Random-candidate-set-construction component

6: Find a tc ∈ C as the next test case satisfying the
specific criterion Test-case-selection component

7: E ← E
∪
{tc}

8: end while
9: Report the result and exit

Fig. 6. Framework pseudocode of the STFCS category.

(e.g., a failure has been caused), the framework repeatedly
uses the random-candidate-set-construction component to
prepare the candidates, and then uses the test-case-selection
component to choose one of these candidates as the next test
case to be applied to the SUT.

Two basic (and popular) approaches to implementing
the STFCS framework are Fixed-Size-Candidate-Set (FSCS)
ART [9], [32], and Restricted Random Testing (RRT) [33]–
[36]4. Clearly, there are different ways to realize the random-
candidate-set-construction and test-case-selection compo-
nents, leading to different STFCS implementations. A num-
ber of enhanced versions of both FSCS and RRT have also
been developed.

5.1.2 Random-Candidate-Set-Construction Component

Several different implementations of the random-candidate-
construction component have been developed.

1) Uniform distribution [9]: This involves construction of
the candidate set by randomly selecting test cases according
to a uniform distribution.

2) Non-uniform distribution [37]: When not using a unifor-
m distribution to generate the candidates, the non-uniform
distribution is usually dynamically updated throughout the
test case generation process. Chen et al. [37], for example,
used a dynamic, non-uniform distribution to have candi-
dates be more likely to come from the center of D than from
the boundary region.

3) Filtering by eligibility [38], [39]: Using an eligibility
criterion (specified using a tester-defined parameter), this
filtering ensures that candidates (and therefore the eventu-
ally generated test cases) are drawn only from the eligible
regions of D. The criterion used is that the selected candi-
date’s coordinates are as different as possible to those of
all previously executed test cases. Given a test case in a
d-dimensional input domain, (x1, x2, · · · , xd), filtering by
eligibility selects candidates such that each i-th coordinate,
xi (1 ≤ i ≤ d), is different to the i-th coordinate of every
previously selected test case. This ensures that all test cases
have different values for all coordinates.

4. Previous ART studies have generally considered RRT to represent
an ART by exclusion category [18], [19]. However, both RRT and FSCS
belong to the STFCS category.
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4) Construction using data pools [40], [41]: “Data pools”
are first constructed by identifying and adding both specific
special values for the particular data type (such as -1, 0,
1, etc. for integers), and the boundary values (such as the
minimum and maximum possible values). This method then
selects candidates randomly from either just the data pools,
with a probability of p, or from the entire input domain,
with probability of 1 − p. Selected candidates are removed
from the data pool. Once the data pool is exhausted, or falls
below a threshold size, it is then updated by adding new
elements.

5) Achieving a specific degree of coverage [42]: This involves
selecting candidates randomly (with uniform distribution)
from the input domain until some specific coverage criteria
(such as branch, statement, or function coverage) are met.

5.1.3 Candidate Set Size
The size of the candidate set, k, may either be a fixed num-
ber (e.g., determined in advance, perhaps by the testers), or
a flexible one. Although, intuitively, increasing the size of
k should improve the testing effectiveness, as reported by
Chen et al. [32], the improvement in FSCS ART performance
is not significant when k > 10: In most studies, therefore, k
has been assigned a value of 10. However, when the value
of k is flexible, there are different methods to design and
determine its value, based on the execution conditions or
environment.

5.1.4 Test-Case-Identification Component
The test-case-identification component chooses one of the
candidates as the next test case, according to the specific
criterion. There are generally two different implementations:
Implementation 1: After measuring all candidates, identifying
the best one (as implemented in FSCS); and Implementation
2: Checking candidates until the first suitable (or valid) one
is identified (as implemented in RRT). The goal of the
test-case-identification component is to achieve the even
spreading of test cases over the input domain, which it
does based on the fitness value. In other words, the fitness
function measures each candidate c from the candidate set C
against the executed set E. We next list the seven different
fitness functions, fitness(c, E), used in STFCS, with the first
six following Implementation 1; and the last one following
Implementation 2.

1) Minimum-Distance [9]: This involves calculating the
distance between c and each element e from E (e ∈ E), and
then choosing the minimum distance as the fitness value for
c. In other words, the fitness function of c against E is the
distance between c and its nearest neighbor in E:

fitness(c, E) = min
e∈E

dist(c, e). (5.2)

2) Average-Distance [40]: Similar to Minimum-Distance,
this also computes the distance between c and each element
e in E, but instead of the minimum, the average of these
distances is used as the fitness value for c:

fitness(c, E) =
1

|E|
∑
e∈E

dist(c, e). (5.3)

3) Maximum-Distance [42]: This assigns the maximum
distance as the fitness value for c. In other words, this fitness

function chooses the distance between c and its neighbor in
E that is farthest away.

fitness(c, E) = max
e∈E

dist(c, e). (5.4)

4) Centroid-Distance [43], [44]: This uses the distance
between c and the centroid (center of the gravity) of E as
the fitness value for c:

fitness(c, E) = dist

(
c,

1

|E|
∑
e∈E

e

)
, (5.5)

where 1
|E|

∑
e∈E

e returns the centroid of E.

5) Discrepancy [45], [46]: This involves choosing the next
test case such that it achieves the lowest discrepancy when
added to E. Therefore, this fitness function of c can be
defined as:

fitness(c, E) = 1−Discrepancy
(
E
∪
{c}
)
. (5.6)

6) Membership-Grade [47]: Fuzzy Set Theory [48] can be
used to define some fuzzy features to construct a membership
grade function, allowing a candidate with the highest (or
threshold) score to be selected as the next test case. Chan et
al. [47] defined some fuzzy features based on distance, com-
bining them to calculate the membership grade function for
candidate test cases. Two of the features they used are: the
Dynamic Minimum Separating Distance (DMSD), which is a
minimum distance between executed test cases, decreasing
in magnitude as the number of executed test cases increas-
es; and the Absolute Minimum Separating Distance (AMSD),
which is an absolute minimum distance between test cases,
regardless of how many test cases have been executed.
During the evaluation of a candidate c against E, if ∀e ∈ E,
dist(c, e) ≥ DMSD, then selection of c will be strongly
favored; however, if ∃e ∈ E such that dist(c, e) ≤ AMSD,
then c will be strongly disfavored. The candidate most
highly favored (with the highest membership grade) is then
selected as the next test case.

7) Restriction [33], [47], [49]: This involves checking
whether or not a candidate c violates the pre-defined re-
striction criteria related to E, denoted restriction(c, E). The
fitness function of c against E can be defined as:

fitness(c, E) =

{
0, if restriction(c, E)is true,
1, otherwise. (5.7)

The random-candidate-construction criterion successively
selects candidates from the input domain (according to
uniform or non-uniform distribution) until one that is not
restricted is identified. Three approaches to using Restriction
in ART are:

• Previous studies [33]–[35], [50] have implemented
restriction by checking whether or not c is located
outside of all (equally-sized) exclusion regions de-
fined around all test cases in E. In a 2-dimensional
numeric input domain D, for example, Chan et
al. [33] used circles around each already selected
test case as exclusion regions, thereby defining the
restriction(c, E) as:

∀e ∈ E, dist(c, e) <

√
R · |D|
π · |E|

, (5.8)
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where R is the target exclusion ratio (set by the
tester [51]), and dist(c, e) is the Euclidean distance
between c and e. In fact, Eq. (5.8) relates to the DMSD
fuzzy feature [47].

• Zhou et al. [49], [52], [53] designed an acceptance
probability Pβ based on Markov Chain Monte Carlo
(MCMC) methods [54] to control the identification of
random candidates. Given a candidate c, the method
generates a new candidate c′ according to the applied
distribution (uniform or non-uniform), resulting in
restriction(c, E) being defined as:

U > Pβ = min

{
P (X(c′) = 1|E)

P (X(c) = 1|E)
, 1

}
, (5.9)

where U is a uniform random number in the interval
[0, 1.0), X(c) is the execution output of c (X(c) = 1
means that c is a failure-causing input, and X(c) = 0
means that it is not), and P (X(c) = 1|E) represents
the probability that c is failure-causing, given the set
E of already executed test cases. According to Bayes’
rule, we have:

P (X(c) = 1|E) = P (E|X(c) = 1)P (X(c) = 1)/Z,
(5.10)

where Z is a normalizing constant. Assuming all
elements in E are conditionally independent for a
test output of c, we then have:

P (E|X(c) = 1) =
∏
e∈E

P (X(e)|X(c) = 1). (5.11)

As illustrated by Zhou et al. [49], [52], [53],
P (X(e)|X(c) = 1) is defined as:

P (X(e) = 1|X(c) = 1) = exp(−dist(e, c)/β1),
(5.12)

and

P (X(e) = 0|X(c) = 1) = 1− exp(−dist(e, c)/β1),
(5.13)

where β1 is a constant. If one candidate is a greater
distance from the non-failure-causing test cases than
another candidate, then it has a higher probability of
being selected as the next test case.

• Using Fuzzy Set Theory [48], Chan et al. [47] applied a
dynamic threshold λ to determine whether or not a
candidate was acceptable, accepting the candidate if
its membership grade was greater than λ. If a prede-
termined number of candidates are rejected for being
below λ, they adjusted the threshold according to
the specified principles. It should be noted that any
Implementation 1 approach to choosing candidates
can be transformed into Implementation 2 by applying
a threshold mechanism.

Six of the seven fitness functions (Minimum-Distance,
Average-Distance, Maximum-Distance, Centroid-Distance,
Membership-Grade, and Restriction) satisfy Rationale 1; one
(Discrepancy) satisfies Rationale 2.

5.2 Partitioning-Based Strategy
The Partitioning-Based Strategy (PBS) divides the input do-
main into a number of subdomains, choosing one as the

1: Set E ← {}
2: Randomly generate a test case tc from D, according

to uniform distribution
3: Add tc into E, i.e., E ← E

∪
{tc}

4: while The stopping condition is not satisfied do
5: if The partitioning condition is triggered then
6: Partition the input domain D into m disjoint

subdomains D1, D2, · · · , Dm, according to the
specific criterion Partitioning-schema component

7: end if
8: Choose a subdomain Di according the specific

criterion Subdomain-selection component
9: Randomly generate the next test case tc from Di,

according to uniform distribution
10: E ← E

∪
{tc}

11: end while
12: Report the result and exit

Fig. 7. Framework pseudocode of the PBS category.

location within which to generate the next test case. Core
elements of PBS, therefore, are to partition the input domain
and to select the subdomain.

5.2.1 Framework

Fig. 7 presents a pseudocode framework for PBS, show-
ing two main components: the partitioning-schema, and
subdomain-selection. The partitioning-schema component de-
fines how to partition the input domain into subdomains,
and the subdomain-selection component defines how to
choose the target subdomain where the next test case will
be generated.

After partitioning, the input domain D will be divid-
ed into m disjoint subdomains D1,D2, · · · ,Dm (m > 1),
according to the partitioning-schema criteria: Di

∩
Dj =

∅ (1 ≤ i ̸= j ≤ m), and D = D1

∪
D2

∪
· · ·
∪
Dm. Next,

based on the subdomain-selection criteria, PBS chooses a
suitable subdomain within which to generate the next test
case.

5.2.2 Partitioning-Schema Component

Many different criteria can be used to partition the input
domain, which can be achieved using either static or dy-
namic partitioning. Static partitioning [55]–[58] means that
the input domain is divided before test case generation,
with no further partitioning required once testing begins.
Dynamic partitioning involves dividing the input domain
dynamically, often at the same time that each new test case
is generated. There have been many dynamic partitioning
schemas proposed, including random partitioning [59], bisec-
tion partitioning [59], [60], and iterative partitioning [61], [62].

1) Static partitioning [58]: Static partitioning divides the
input domain into a fixed number of equally-sized subdo-
mains, with these subdomains then remaining unchanged
throughout the entire testing process. This is simple, but
influenced by the tester: testers need to divide the input do-
main before testing, and different numbers of subdomains
may result in different ART performance.
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2) Random partitioning [59]: Random partitioning uses the
generated test case tc as the breakpoint to divide the input
(sub-)domain Di into smaller subdomains. This partitioning
usually results in the input domain D being divided into
subdomains of unequal size.

3) Bisection partitioning [59], [60]: Similar to static par-
titioning, bisection partitioning divides the input domain
into equally-sized subdomains. However, unlike static par-
titioning, bisection partitioning dynamically bisects the input
domain whenever the partitioning condition is triggered.
There are a number of bisection partitioning implementa-
tions. Chen et al. [59], for example, successively bisected
dimensions of the input domain; whenever the i-th bisection
of a dimension resulted in 2i parts, the (i + 1)-th bisection
was then applied to another dimension. Chow et al. [60]
bisected all dimensions at the same time, with the input
domain D being divided into 2i∗d subdomains (where d is
the dimensionality of D) after the i-th bisection. Bisection
partitioning does not change existing partitions during bi-
section, only bisecting the subdomains in the next round.

4) Iterative partitioning [61], [62]: In contrast to bisection
partitioning, iterative partitioning modifies existing parti-
tions, resulting in the input domain being divided into
equally-sized subdomains. Each round of iterative partition-
ing divides the entire input domain D using a new schema.
After the i-th round of partitioning, for example, Chen et
al. [61] divided the input domain into id subdomains, with
each dimension divided into i equally-sized parts. Mayer et
al. [62], however, divided only the largest dimension into
equally-sized parts, leaving other dimensions unchanged,
resulting in a dimension with j parts being divided into
j + 1 parts.

Although random partitioning may divide the input
domain into subdomains with different sizes, the other three
partitioning approaches result in equally-sized subdomains.

5.2.3 Subdomain-Selection Component
After partitioning the input domain D into m subdomains
D1,D2, · · · ,Dm, the next step is to choose the subdomain
where the next test case will be generated. The following
criteria can be used to support this subdomain selection
process:

1) Maximum size [59]: Given the set T of previously gen-
erated test cases, among those subdomains Di (1 ≤ i ≤ m)
without any test cases, the largest one is selected for gen-
eration of the next test case: ∀j ∈ {1, 2, · · · ,m} satisfying
Di

∩
T = Dj

∩
T = ∅, and |Di| ≥ |Dj |.

2) Fewest previously generated test cases [59], [60]: Given
the set T of previously generated test cases, this criterion
chooses a subdomain Di containing the fewest test cases:
∀j ∈ {1, 2, · · · ,m}, |Di

∩
T | ≤ |Dj

∩
T |.

3) No test cases in target or neighbor subdomains [58], [61],
[62]: This ensures that the selected subdomain not only
contains no test cases, but also does not neighbor other
subdomains containing test cases.

4) Proportional selection [63]: Proportional selection uses
two dynamic probability values, p1 and p2, to represent the
likelihood that some (or all) elements of the failure region
are located in the edge or center regions, respectively. Kuo et
al. [63], for example, used two equally-sized subdomains in
their proportional selection implementation, with each test

case selected from either the edge or center region based on
the value of p1/p2.

Three criteria (fewest previously generated test cases, no
test cases in target or neighbor subdomains, and proportional
selection) require that all subdomains be the same size; only
one (maximum size) has no such requirement. Furthermore,
two criteria (maximum size and no test cases in target or
neighbor subdomains) generally select one test case per sub-
domain; the other two (fewest previously generated test cases
and proportional selection) may select multiple test cases from
each subdomain.

Intuitively speaking, three criteria (maximum size, fewest
previously generated test cases, and proportional selection) fol-
low Rationale 2. The maximum size criterion chooses the
largest subdomain without any test cases as the target
location for the next test case — test selection from a
larger subdomain may have a better chance of achieving
a good distribution of test cases. Similarly, the fewest pre-
viously generated test cases, and proportional selection criteria
ensure that subdomains with fewer test cases have a higher
probability of being selected. The third criterion (no test
cases in target or neighbor subdomains) follows both Rationale
1 and Rationale 2, choosing a target subdomain without
(and away from) any test cases, thereby achieving a good
test case distribution. Furthermore, because this criterion
also avoids subdomains neighboring those containing test
cases, the subsequently generated test cases generally have
a minimum distance from all others.

5.3 Test-Profile-Based Strategy
The Test-Profile-Based Strategy (TPBS) [64] generates test
cases based on a well-designed test profile (different from
the uniform distribution), dynamically updating the profile
after each test case selection.

5.3.1 Framework
Fig. 8 presents a pseudocode framework for TPBS. Because
TPBS generates test cases based on the test profile, the core
part of TBPS focuses on how to design the dynamic test
profile. A test profile can be considered as the selection prob-
ability distribution for all test inputs in the input domain
D, with test cases in different locations having different
probabilities. When a test case is executed without causing
failure, its selection probability is then assigned a value of 0.

1: Set E ← {}
2: Randomly generate a test case tc from D, according

to uniform distribution
3: Add tc into E, i.e., E ← E

∪
{tc}

4: while The stopping condition is not satisfied do
5: Adjust the test profile based on already selected

test cases from E Test-profile-adjustment component
6: Randomly generate the next test case tc based on

adjusted test profile
7: E ← E

∪
{tc}

8: end while
9: Report the result and exit

Fig. 8. Framework pseudocode of the TPBS category.
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5.3.2 Test-Profile-Adjustment Component
Based on the intuitions underlying ART [9], a test profile
should be adjusted to satisfy the following [64]:

• The closer a test input is to the previously executed
test cases, the lower the selection probability that it is
assigned should be.

• The farther away a test input is from previously ex-
ecuted test cases, the higher the selection probability
that it is assigned should be.

• The probability distribution should be dynamically
adjusted to maintain these two features.

A number of test profiles exist to describe the proba-
bility distribution of test cases, including the triangle pro-
file [65], cosine profile [65], semicircle profile [65], and power-law
profile [66]. Furthermore, the probabilistic ART implementa-
tion [50] uses a similar mechanism to TPBS.

Because the test profiles use the location of non-failure-
causing test cases when assigning the selection probability
of each test input from the input domain, TPBS obviously
follows Rationale 1: If a test input is farther away from
non-failure-causing test cases than other candidates, it has a
higher probability of being chosen as the next test case.

5.4 Quasi-Random Strategy
The Quasi-Random Strategy (QRS) [67], [68] applies quasi-
random sequences to the implementation of ART. Quasi-
random sequences are point sequences with low discrepan-
cy and low dispersion: As discussed by Chen et al. [31], a set
of points with lower discrepancy and dispersion generally
has a more even distribution. Furthermore, the computa-
tional overheads incurred when generating n quasi-random
test cases is only O(n), which is similar to that of pure RT. In
other words, QRS can achieve an even-spread of test cases
with a low computational cost.

5.4.1 Framework
Fig. 9 presents a pseudocode framework for QRS, showing
the two main components: quasi-random-sequence-selection
and randomization. QRS first takes a quasi-random sequence
to construct each point, then randomizes it to create the
next test case according to the specific criterion. The main
motivation for involving randomization in the process is
that quasi-random sequences are usually generated by de-
terministic algorithms, which means that the sequences
violate a core principle of ART: the randomness of the test
cases.

1: Set E ← {}
2: while The stopping condition is not satisfied do
3: Generate the next element ts from a given quasi-

random sequence
Quasi-random-sequence-selection component

4: Randomize ts as the test case tc according to the
specific criterion Randomization component

5: E ← E
∪
{tc}

6: end while
7: Report the result and exit

Fig. 9. Framework pseudocode of the QRS category.

5.4.2 Quasi-Random-Sequence-Selection Component

A number of quasi-random sequences have been examined,
including Halton [69], Sobol [70], and Niederreiter [71]. In
this section, we only describe some representative sequences
for quasi-random testing.

1) Halton sequence [69]: The Halton sequence can be con-
sidered the d-dimensional extension of the Van der Corput
sequence, a one-dimensional quasi-random sequence [72]
defined as:

ϕb(i) =
ω∑

j=0

ijb
−j−1, (5.14)

where b is a prime number, ϕb(i) denotes the i-th element
of the Van der Corput sequence, ij is the j-th digit of i
(in base b), and ω denotes the lowest integer for which
∀j > ω, ij = 0 is true. For a d-dimensional input do-
main, therefore, the i-th element of the Halton sequence can
be defined as (ϕb1(i), ϕb2(i), · · · , ϕbd(i)), where the bases,
b1, b2, · · · , bd, are pairwise coprime. Previous studies [72],
[73] have used the Halton sequence to generate test cases.

2) Sobol sequence [70]: The Sobol sequence can be consid-
ered a permutation of the binary Van der Corput sequence,
ϕ2(i), in each dimension [72], and is defined as:

Sobol(i) = XOR
j=1,2,··· ,ω

(ijδj), (5.15)

δj = XOR
k=1,2,··· ,r

(
βkδj−k

2j
)⊕ δj−r

2j+r
, (5.16)

where Sobol(i) represents the i-th element of the Sobol
sequence, ij is the j-th digit of i in binary, ω denotes the
number of digits of i in binary, and β1, β2, · · · , βr come
from the coefficients of a degree r primitive polynomial
over the finite field. Previous studies [72]–[74] have used
this sequence for test case generation.

3) Niederreiter sequence [71]: The Niederreiter sequence
may be considered to provide a good reference for other
quasi-random sequences: because all the other approaches
can be described in terms of what Niederreiter calls (t, d)-
sequences [71]. As discussed by Chen and Merkel [67],
the Niederreiter sequence has lower discrepancy than oth-
er sequences. Previous investigations [67], [73] have used
Niederreiter sequences to conduct software testing.

5.4.3 Randomization Component

The randomization step involves randomizing the quasi-
random sequences into actual test cases. The following three
representative methods illustrate this.

1) Cranley-Patterson rotation [75], [76]: This generates a
random d-dimensional vector V = (v1, v2, · · · , vd) to per-
mute each coordinate of the i-th point Ti = (t1i , t

2
i , · · · , tdi )

to a new i-th point Pi = (p1i , p
2
i , · · · , pdi ), where

pji =

{
tji + vj , if tji + vj < 1,

tji + vj − 1, if tji + vj ≥ 1.
(5.17)

2) Owen Scrambling [77]: Owen Scrambling applies the
randomization process to the Niederreiter sequence (a (t, d)-
sequence in base b). The i-th point in the sequence can be

written as Ti = (t1i , t
2
i , · · · , tdi ), where tji =

∞∑
k=1

aijkb
−k.

The permutation process is applied to the parameter aijk
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for each point according to some criteria. Compared with
Cranley-Patterson rotation, Owen Scrambling more precise-
ly maintains the low discrepancy and low dispersion of
quasi-random sequences [68].

3) Random shaking and rotation [74], [78]: This first uses
a non-uniform distribution (such as the cosine distribution)
to shake the coordinates of each item in the quasi-random
sequence into a random number within a specific value
range. Then, a random vector based on the non-uniform
distribution is used to permute the coordinates of all points
in the sequence.

QRS generates a list of test cases (a quasi-random
sequence) with a good distribution (including discrepan-
cy [31]), indicating that it follows Rationale 2.

5.5 Search-Based Strategy

The Search-Based Strategy (SBS), which comes from Search
Based Software Testing (SBST) [79], [80], uses search-based
algorithms to achieve the even-spreading of test cases over
the input domain. In contrast to other ART strategies, SBS
aims to address the question: Given a test set E, of size
N (|E| = N ), due to limited testing resources, how can E
achieve an even spread of test cases over the input domain,
thereby enhancing its fault detection ability? SBS needs to
assign a parameter (the number of test cases N ) before test
case generation begins.

5.5.1 Framework

Fig. 10 shows a pseudocode framework for SBS. Because
ART requires that test cases that have some randomness,
SBS generates an initial test set population PT (of size ps)
where each test set (of size N ) is randomly generated. A
search-based algorithm is then used to iteratively evolve
PT into its next generation. Once a stopping condition
is satisfied, the best solution from PT is selected as the
final test set. Two core elements of SBS, therefore, are the
choice of search-based algorithm for evolving PT , and the
evaluation (fitness) function for each solution. Because the
fitness function is also involved in the evolution process (to
evaluate the PT updates), we do not consider it a separate
SBS component.

1: Set the number of test cases N
2: E ← {}
3: Generate an initial population of test sets PT =
{T1, T2, · · · , Tps}, each of which is randomly gener-
ated with size N according to uniform distribution,
where ps is the population size

4: while The stopping condition is not satisfied do
5: Evolve PT to construct a new population of test

sets PT ′ by using a given search-based algorithm
Evolution component

6: PT ← PT ′

7: end while
8: E ← the best solution of PT
9: Report the result and exit

Fig. 10. Framework pseudocode of the SBS category.

5.5.2 Evolution Component

A number of search-based algorithms have been used to
evolve ART test sets, including the following:

1) Hill Climbing (HC) [81]: HC makes use of a single
initial test set T , rather than a population of test sets PT
(i.e., ps = 1). The basic idea behind HC is to calculate the
fitness of T , and to shake it for as long as the fitness value
increases. One HC fitness function is the minimum distance
between any two test cases in T , where the distance is a
specific Euclidean distance [82]:

fitness(T ) = min
tci ̸=tcj∈T

dist(tci, tcj). (5.18)

2) Simulated Annealing (SA) [83]: Similar to HC, SA also
only uses a single test set T (ps = 1). During each iteration,
SA constructs a new test set T ′ by randomly selecting
input variables from T with a mutation probability and
modifying their values. The fitness values of both T and
T ′ are then calculated. If the fitness of T ′ is greater than
that of T , then T ′ is accepted as the current solution for
the next iteration. If the fitness of T ′ is not greater than
that of T , then the acceptance of T ′ is determined by a
controlled probability function using random numbers and
the temperature parameter adopted in SA. Bueno et al. [83]
defined the fitness function of T as the sum of distances
between each test case and its nearest neighbor:

fitness(T ) =
∑

tci∈T

min
tcj ̸=tci∈T

dist(tci, tcj). (5.19)

3) Genetic Algorithm (GA) [83]: The GA algorithm uses
a population of test sets rather than just a single one, and
three main operations: selection, crossover, and mutation. GA
first chooses the test sets for the next generation by assigning
a selection probability — Bueno et al. [83] used a selection
probability proportional to the fitness of T (calculated with
Eq. (5.19)). The crossover operation then generates offspring
by exchanging partial values of test cases between pairs of
test sets, and then through mutation by randomly changing
some partial values.

4) Simulated Repulsion (SR) [84]: Similar to GA, SR makes
use of a population of test sets, PT , with each solution
Ti ∈ PT (1 ≤ i ≤ ps) evolving independently from, and
concurrently to, the other test sets. In each SR iteration, each
test case from each solution Ti updates its value based on
Newton mechanics with electrostatic force from Coulomb’s
Law. The principle of moving a test case tc ∈ Ti is as follows:

tcnew = tc+ (
−→
RF (tc)/m), (5.20)

where m is a constant (the mass of all test cases), and
−→
RF (tc)

is the resultant force of tc, defined as:

−→
RF (tc) =

∑
tc′ ̸=tc∈Ti

Q2

dist(tc, tc′)2
, (5.21)

where Q is the current value of electric charge for the test
cases.

5) Local Spreading (LS) [85]: Similar to HC and SA, LS also
only uses a single initial test set T . LS successively moves
each point tc ∈ T that is allowed to move according to the
following: tc’s first and second nearest neighbors in T , tcf
and tcs, are identified, and the corresponding distances, df
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and ds, are calculated. A direction of movement is identified
related to tcf . Then, tc is moved a small distance (related
to ds − df ) in the identified direction, slightly increasing
the minimum distance from tc to its nearest neighbor (the
distance between tc and tcf ). These steps are repeated
until there are no points remaining that can still move.
LS effectively attempts to increase the minimum distance
among all test cases in T , thereby producing a more evenly-
spread test set.

6) Random Border Centroidal Voronoi Tessellations (R-
BCVT) [73]: RBCVT uses an initial test set T of size N , and
makes use of Centroidal Voronoi Tessellations (CVT) [86]
to achieve an even spread of the N test cases over the input
domain,D. It constructs N disjoint cells around the initial N
test cases using a Voronoi tessellation with random border
point set, V1, V2, · · · , VN , satisfying i ̸= j, Vi

∩
Vj = ∅; and∪N

i=1 Vi = D, where 1 ≤ i, j ≤ N . Each cell Vi corresponds
to a point tc ∈ T such that

Vi = {x ∈ D|∀tc′ ̸= tc ∈ T : dist(x, tc) < dist(x, tc′)}.
(5.22)

RBCVT then calculates the centroid of each Voronoi region
to obtain N new points for the next generation and evolu-
tion.

Since SBS achieves an even spread of the N test cases
over the input domain, many studies have used test suites
generated by other ART approaches to replace the random
test suites, to speed up the evolution process. Shahbazi et
al. [73], for example, used RBCVT to improve the quality of
test suites obtained from STFCS and QRS. Huang et al. [85]
have also argued that it would be better to use adaptive
random test suites than random test suites as the input for
LS.

5.6 Hybrid-Based Strategies

Hybrid-Based Strategies (HBS) aim at improving the testing
effectiveness (such as fault detection capability) or efficiency
(such as test generation cost) by combining multiple ART
approaches.

5.6.1 STFCS + PBS

The STFCS + PBS hybrids aim to enhance the effectiveness
of either STFCS or PBS.

From the perspective of STFCS enhancement, Chen et
al. [87], [88], when generating the m-th test case, divided the
input domain D into m disjoint, equally-sized subdomains,
D1,D2, · · · ,Dm, from the edge to the center of D, such that:
D =

∪m
i=1Di; Di

∩
Dj = ∅ for 1 ≤ i ̸= j ≤ m; and

|D1| = |D2| = · · · = |Dm|. Next, for the STFCS random-
candidate-construction component, they generated random
test cases in those subdomains not already containing test
cases. Mayer [89] used bisection partitioning to control the
STFCS test-case-identification component, only checking the
distance from a candidate c to points in its neighboring
regions, instead of to all points. These methods could signif-
icantly reduce the STFCS computational overheads, for both
FSCS and RRT. Mao et al. [90] proposed a similar method,
distance-aware forgetting, to reduce the FSCS computational
overheads, but they used static, rather than bisection, par-
titioning. Chow et al. [60] proposed a new efficient and

effective method called ART with divide-and-conquer that
independently applies STFCS to each subdomain (using
bisection partitioning). Previous studies [55]–[57] have com-
bined STFCS with static partitioning, using the concept of
mirroring to reduce the computational costs. Enhancements
to mirroring have included a revised distance metric [91],
and dynamic partitioning with new mirroring function-
s [92]. Chan et al. [47] applied bisection partitioning to each
dimension of the input domain, then checking the amount
of executed test cases in each subdomain: candidates in
subdomains with fewer executed test cases were then more
likely to be selected.

Regarding the enhancement of PBS, Chen and
Huang [93] applied the test-case-identification component
to improving the effectiveness of PBS with random par-
titioning, selecting test cases based on the principle of
Minimum-Distance and Restriction. Mayer [94] used a sim-
ilar mechanism to improve the effectiveness of PBS with
bisection partitioning. Mao and Zhan [95] also used this
mechanism to enhance PBS by bisection partitioning, but
instead of Euclidean distance, they used the coordinate
distance to boundaries (boundary distance). Similarly, May-
er [96], [97], for PBS with random and bisection partitioning,
used exclusion regions in a possible subdomain to generate
a new test case. Mao [98], to overcome the drawbacks of ran-
dom partitioning, proposed a new partitioning schema, two-
point partitioning, based on the STFCS test-case-identification
component: When generating a new test case tc, it randomly
chooses two candidates from the subdomain that needs
to be partitioned, and then uses the midpoint of tc and
the farthest candidate as the break point to partition the
subdomain.

In addition to the hybrid methods listed above, oth-
er, new ART techniques have been proposed based on
other combinations of different concepts. Chen et al. [99],
for example, introduced a new test-case-identification cri-
terion (identifying the test case that is more adjacent to
the subdomain centroid), and combined it with PBS with
bisection partitioning to form a new technique: ART by
balancing. Mayer [100] proposed a new approach, lattice-
based ART, that uses bisection partitioning to divide the
input domain for lattice generation. It then generates test
cases by permuting the lattices within a restricted region.
Chen et al. [101] enhanced Mayer’s lattice-based ART [100]
by refining the restricted regions for each lattice. Sabor and
Mohsenzadeh [102], [103] proposed an enhanced version of
Chen and Huang’s method [93] by including an enlarged
input domain [104].

5.6.2 STFCS + SBS

The STFCS + SBS hybrids either enhance STFCS, or repre-
sent new methods. Tappenden and Miller [105] proposed
Evolutionary ART, a new method that aims to construct
an evolved test set for the STFCS test-case-identification.
The method initially generates a fixed-size random test
set, according to a uniform distribution. Until a stopping
condition is satisfied (for example, 100 generations have
been completed [105]), each iteration uses an evolutionary
algorithm, a Genetic Algorithm (GA), to evolve the test set.
The fitness function used during the evolution stage is the
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same as Eq. (5.2), and the candidate with the highest fitness
value is then selected as the next test case.

Iqbal et al. [106] combined STFCS with SBS to produce
a hybrid that initially uses GA to generate test cases, but
if no fitter test cases are found after running a number of
iterations, then the algorithm switches to FSCS to generate
the following test cases.

5.6.3 TPBS + PBS or STFCS

The TPBS + PBS or STFCS hybrids aim to augment the
TPBS test profiles using PBS or STFCS principles. Liu
et al. [107] proposed three methods to design test pro-
files, based on STFCS restriction (exclusion), and on PBS
subdomain-selection criteria (maximum size [59] and least
number of previously generated test cases [59], [60]). Using
exclusion, all points inside the exclusion regions should have
no chance of being selected as test cases: their probability of
selection is 0. Using the maximum size [59], all points inside
the largest subdomain have a probability to be chosen as
test cases, and all other points (those in other subdomains)
have no chance. Similarly, when using the least number of
previously generated test cases [59], [60], all points within the
subdomains with the least number of previously generated
test cases have a chance to be selected, and all others have
no chance.

5.7 Strengths and Weaknesses

Previous studies [18] have confirmed that ART is more
effective than RT in general, according to several different
evaluations. As discussed by Chen et al. [108], however,
both favorable and unfavorable conditions exist for ART.
In this section, therefore, we summarize the strengths and
weaknesses of ART.

5.7.1 Strengths

ART outperforms RT from the following perspectives:
1) Test case distribution: ART generally delivers a more

even distribution of test cases across the input domain than
RT. All ART approaches deliver better test case disper-
sion [31] than RT [31], [39], [45], [46], [64], [74], [78], [107].
When the input domain dimensionality d is low (d is equal
to 1 or 2), all ART approaches generate test cases with a
more even spread over the input domain than RT, in terms
of test case discrepancy [31]. However, as the dimensionality
increases, some ART approaches have worse performance
than RT, including FSCS [31], [39], [45], [46], RRT [31], [107],
and TPBS [64]. Nevertheless, even when the dimensionality
is 3 or 4, a number of ART approaches do still have better
discrepancy than RT, including PBS [31], [107] and QRS [74].

2) Fault detection capability: It is natural that ART should
have better fault detection ability than RT when the failure
region is clustered — ART was specifically designed to
make use of this clustering information. Chen et al. [108]
investigated the factors impacting on ART fault detection
ability, identifying a number of favorable conditions for
ART, including: (a) when the failure rate is small; (b) when
the failure region is compact; (c) when the number of failure
regions is low; and (d) when a predominant region exists
among all the failure regions. When any of these conditions

are satisfied, ART generally has better fault detection per-
formance than RT. Even when none of the conditions are
satisfied, ART can achieve comparable fault detection to RT.

3) Code coverage: Studies have shown that ART achieves
greater structure-based code coverage than RT for the same
number of test cases [83], [84], [109], [110]. Bueno et al. [83],
[84] have observed that SBS outperforms RT for data-flow
coverage [111] (including all-uses coverage and all-du-paths
coverage). Chen et al. [109], [110] have reported that FSCS
is more effective than RT for both control-flow coverage [112]
(including block coverage and decision coverage), and data-flow
coverage (c-uses coverage and p-uses coverage [111]).

4) Reliability estimation and assessment: For the same num-
ber of test cases, ART has greater code coverage than RT [83],
[84], [109], [110]. It has also been observed that coverage can
be used to improve the effectiveness of software reliability
estimation [113]. Compared with RT, therefore, ART should
enable better software reliability estimation, and higher
confidence in the reliability of the SUT, even when no failure
is detected. Unfortunately, this characteristic (strength) of
ART was obtained from the perspective of theoretical results
rather than empirical studies, which means that no ART
studies have yet investigated the reliability estimation and
assessment.

5) Cost-effectiveness: The cost-effectiveness of testing con-
siders both effectiveness (e.g., fault detection) and efficiency
(including test case generation and execution time). ART
cost-effectiveness has often been examined using the F-
time [61], which is the amount of computer execution time
required to detect the first failure (including the time for
both generation and execution of test cases). Because ART
involves additional computation to evenly spread the test
cases over the input domain [17], [18], ART should naturally
take more time than RT to generate the same number of test
cases, suggesting that it may have worse cost-effectiveness
than RT. However, studies [18], [92], [114]–[116] have shown
that compared with RT, ART typically requires less time to
identify the first failure (F-time) — therefore, ART can be
more cost-effective than RT. In general, three main condi-
tions can result in ART achieving a better cost-effectiveness
than RT: (a) ART using fewer test cases than RT to detect the
first failure (F-measure); (b) the computational overhead of
the ART approach being acceptable (comparable or slightly
higher than that of RT); or (c) the combined program execu-
tion and test setup time being more than the time required
by ART to generate a test case.

5.7.2 Weaknesses
There are three main challenges associated with some ART
approaches: boundary effect, computational overheads, and high
dimension problem.

1) Boundary effect [117]: Some ART approaches tend to
generate more test cases near the boundary than near the
input domain center, a situation known as the boundary
effect. One reason for the boundary effect, as explained in
the context of RRT [33]–[36], is that test cases cannot be gen-
erated outside the boundary, thus reducing the number of
sources of restriction from close to boundary regions. Both
FSCS and RRT have been shown to suffer from the boundary
effect, especially when the failure rate and dimensionality
are high [117].
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A number of attempts have been made to address the
boundary effect. Some studies increased the selection prob-
ability of candidates from the input domain center over
those from the boundary [37]–[39], [63], [87], [88]. Other
studies have removed the boundaries themselves, either by
joining boundaries [82], [118], [119], or by extending the
input domain beyond the original boundaries [104], [117],
[120]. Chen et al. [99] preferred to choose test cases close to
the input domain centroid. Mayer [121] initially selected test
cases within a small region around the center of the input
domain, extending the region if no failures were identified.

2) Computational overheads [17], [18]: ART approaches
typically incur heavier computational costs than RT to
generate test cases. This is particularly the case for some
ART approaches, such as FSCS, and RRT. When testing, the
actual test execution time can be an important factor that
may mitigate the computational overheads: When the test
execution time is very long, for example, the ART computa-
tional costs may be more acceptable. However, because the
test execution time depends mainly on characteristics of the
SUT, and not on the test generation, we do not discuss it
here.

The time complexity of FSCS and RRT are of the or-
der of O(n2) and n2 log n, respectively (where n is the
number of generated test cases) [32], [122]. The PBS and
QRS techniques of ART are significantly more efficient than
others (such as STFCS and SBS). Many hybrid approaches
have been developed to reduce the overheads incurred by
FSCS and RRT. Other techniques for ART overhead reduc-
tion have also been explored. Chan et al. [36], [123], for
example, used a square exclusion region version of RRT
to reduce the distance calculation overheads (though not
the algorithm’s complexity, O(n2)). Chen and Merkel [124]
applied Voronoi diagrams [125] to reduce the FSCS distance
calculations, lowering the complexity from O(n2) to O(n

4
3 ).

Mirroring [55]–[57], [92] has been used to directly generate
mirror test cases of a source test case based on a principle of
symmetry of subdomains. Although the time complexity for
FSCS mirroring can still be O( n2

m2 ) [55]–[57] (where m is the
number of subdomains), an enhanced mirroring technique
can reduce this to O(n) [92]. Shahbazi et al. [73] have also
proposed a linear-order (O(n)) ART approach: a fast search
algorithm for RBCVT (RBCVT-Fast).

While the overhead-reduction approaches listed above
can only be applied to numeric input domains, forget-
ting [126], which reduces overheads by omitting some
previous test cases from calculations, has no such limita-
tion. Based on the Category-Partition Method [127], Barus et
al. [128] have also recently introduced a linear-order FSCS
algorithm using the test-case-identification with Average-
Distance for nonnumeric inputs.

3) High dimension problem [31], [129]: It has been observed
that the effectiveness of some ART approaches may decrease
when the number of dimensions of the input domain in-
creases, due to the curse of dimensionality [130]. Because the
center of a high dimensional input domain has a higher
probability of being a failure region than the boundary [99],
[121], it has been suggested that the boundary effect may
impact (or even cause) the high dimension problem. Ap-
proaches for addressing the boundary effect [37]–[39], [63],

[82], [87], [88], [99], [104], [117]–[121], [131], therefore, may
also help to alleviate the high dimension problem. However,
because their effectiveness is not constant across dimension-
s, although they may alleviate, current approaches do not
solve the dimensionality problem [81]. Furthermore, finding
a solution with consistent effectiveness across all dimension-
s seems unlikely [81], so some decrease in effectiveness in
higher dimensions may need to be tolerated. Nevertheless,
Schneckenburger and Schweiggert [81] have combined Hill
Climbing with continuous distance [122] to produce a search-
based ART approach that (slightly) reduces the dependency
on dimensionality.

Summary of answers to RQ2:

1) Based on different concepts for the even-spreading of
test cases, the various ART approaches can be clas-
sified into the following six categories: Select-Test-
From-Candidates Strategy (STFCS); Partitioning-Based
Strategy (PBS); Test-Profile-Based Strategy (TPBS);
Quasi-Random Strategy (QRS); Search-Based Strategy
(SBS); and Hybrid-Based Strategy (HBS).

2) For each of the first five categories, a framework has been
presented showing the basic steps involved.

3) Compared with RT, ART generally performs better when
certain conditions hold (identified as “favorable condi-
tions” for ART), according to test case distribution, fault
detection capability, code coverage, reliability estimation
and assessment, and cost-effectiveness.

4) ART suffers from three main weaknesses: boundary
effect, computational overheads, and the high dimension
problem.

6 ANSWER TO RQ3: IN WHAT DOMAINS AND AP-
PLICATIONS HAS ART BEEN APPLIED?
Of the 140 papers in our survey, 80 involved application
of ART to specific testing problems. Fig. 11 presents the
distribution of the ART applications, showing that 76%
of studies focused on various testing environments (or
programs), and 24% involved application of ART to other
testing techniques.

6.1 Application Domains
Based on the classification shown in Fig. 11, numeric pro-
grams (47%) have been the most popular domains for ART
application, followed by object-oriented programs (7%), em-
bedded systems (6%), web services and applications (4%),
configurable systems (4%), and simulations and modelling
(3%). 5% of the papers revealed other application domains,
including mobile applications and aspect-oriented program-
s.

6.1.1 Numeric Programs
Chen et al. [32] applied ART to the testing of twelve
open-source numeric analysis programs from Numerical
Recipes [132] and ACM Collected Algorithms [133], written
in C or C++. These programs have also been widely used in
other ART studies, and, in addition to C and C++, have
also been implemented in Java. Zhou et al. [52] applied
ART to three other numeric programs from the Numerical
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Fig. 11. Application distribution of ART.

Recipes [132]. Arcuri and Briand [134] conducted experi-
ments on a further nine numeric programs for basic algo-
rithms [135] and for mathematical routines from the Nu-
merical Recipes [132]. Chen et al. [109] used ART with two
numeric programs from the GNU Scientific Library [136],
and one from the Software-artifact Infrastructure Repository
(SIR) [137]. Walkinshaw and Fraser [138] investigated six
units within the Apache Commons Math framework [139]
and two units within JodaTime [140].

6.1.2 Object-Oriented Programs
Ciupa et al. [40], [141] defined a new similarity metric for
object-oriented (OO) inputs, and integrated it into ART
(ARTOO). They compared ARTOO with RT using eight real-
life, faulty OO programs from the EiffelBase Library [142].
Lin et al. [114] used their ART approach on six OO programs
containing manually-seeded faults — five of these programs
were from the Apache Common library [143], and one was a
wide-area event notification system, Siena. Chen et al. [144]
also proposed a new similarity metric for OO inputs, using
it to apply ART to 17 OO programs (five C++ libraries and
12 C# programs) from the following open-source reposi-
tories: Codeforge [145], Sourceforge [146], Codeplex [147],
Codeproject [148], and Github [149]. Putra and Mursan-
to [44] compared two ART techniques applied to eight
OO programs, written in Java, from the Apache Common
library [143]. Jaygarl et al. [150] evaluated different RT and
ART techniques applied to four open-source OO programs
(written in Java).

6.1.3 Configurable Systems
Chen et al. [110] compared the code coverage achieved
by ART and RT using ten UNIX utility programs that can
be considered configurable systems — they are influenced
by different configurations or factors, obtained using the
Category-Partition Method (CPM) [127]. Huang et al. [151]
applied ART to combinatorial input domains (configurable input
domains), testing five small C programs [152], and four

versions of another configurable system, Flex (a fast lexi-
cal analyzer), from the SIR [137]. They also identified the
configurable input domains using CPM. Barus et al. [128]
proposed an efficient ART approach, and applied it to 14
configurable systems and programs — seven Siemens pro-
grams from the SIR [137]; six UNIX utilities; and one regular
expression processor from the GNU Scientific Library [136].

6.1.4 Web Services and Applications
Tappenden and Miller [153] applied an evolutionary ART al-
gorithm to cookie collection testing, applying it to six open-
source web applications written in C# and PHP. Selay et
al. [115] used ART in image comparisons when testing a set
of real-world, industrial web applications. Chen et al. [154]
developed a system to test web service vulnerabilities that
generates ART test cases based on Simple Object Access
Protocol (SOAP) messages: twenty web services (both open-
source and specifically written services) were examined in
their study.

6.1.5 Embedded Systems
Hemmati et al. [155]–[157] applied ART to two industrial
embedded systems: a core subsystem of a video-conference
system, implemented in C; and a safety monitoring com-
ponent of a safety-critical control system written in C++.
Arcuri et al. [106], [158] compared RT, ART, and search-
based testing using a real-life real-time embedded system.
This very large and complex seismic acquisition system,
implemented in Java, interacts with many sensors and ac-
tuators.

6.1.6 Simulations and Models
Matinnejad et al. [159] applied an ART approach to test three
Stateflow models of mixed discrete-continuous controller-
s: two industrial models from Delphi [160], Supercharger
Clutch Controller (SCC) and Auto Start-Stop Control (ASS);
and one public domain model, Guidance Control System
(GCS), from Mathworks [161]. Sun et al. [162] proposed an
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enhanced ART approach for testing Architecture Analyze and
Design Language (AADL) models [163], reporting on a case
study applying it to an Unmanned Aerial Vehicle (UAV)
cruise control system, which includes three sensor devices
(radar, GPS, and speed devices), and two subsystems (read
data calculation, and flight control systems).

6.1.7 Other Domains
Parizi and Ghani [164] conducted a preliminary study of
ART for aspect-oriented programs, identifying some poten-
tial research directions. Shahbazi and Miller [165] investigat-
ed the application of ART to programs with string inputs,
comparing the performance of different ART approaches
on 19 open-source programs. Liu et al. [116] used ART to
test mobile applications, providing a new distance metric
for event sequences. Their study examined six real-life mo-
bile applications implemented in Java. Koo and Park [166]
investigated ART for SDN (Software-Defined Networking)
OpenFlow switches, aiming to generate test packages for
switches.

6.1.8 Summary of Main Results for Application Domains
Table 6 summarizes the main results for some of the original
studies involving application of ART to different domains.
Some of the studies did not explicitly provide results of the
comparison between RT and ART, and so have been omitted
from the table. Information about the programs tested in
each application domain is available in Table A.1, in the
appendix.

In Table 6, the columns “%Effectiveness Improvement”
and “%Efficiency Improvement” show the percentage im-
provements of testing effectiveness and efficiency of ART
over RT, respectively. Given an evaluation metric M (for
example, to measure testing effectiveness or efficiency), if
Ma represents the value for ART, and Mr the value for RT,
then the percentage improvement (of ART over RT) can be
calculated as:

• 100 ∗ (Mr−Ma)/Mr , if lower values mean improve-
ments; and

• 100∗(Ma−Mr)/Mr, if greater values mean improve-
ment.

Because of the additional computations involved in ART,
it is intuitive that it should take longer than RT to generate
the same number of test cases. The “Efficiency” data here,
therefore, refers to the time taken to achieve the stopping
criterion — for example, the time taken to detect the first
failure (the F-time [61]), which includes the combined gen-
eration and execution time of all test cases executed before
causing the first failure). The “Efficiency” can be considered
the cost-effectiveness metric.

Based on Table 6, we have the following observations:

• Across all application domains, ART usually
achieves better testing effectiveness than RT, espe-
cially for numeric and object-oriented programs.

• For a particular application domain, due to the dif-
ferent characteristics of the various programs, ART
may perform differently with different programs.

• Many of the original studies surveyed (including
the numeric programs and configurable systems)

only provided the information for “%Effectiveness
Improvement”, not for “%Efficiency Improvement”.

• Some studies found ART to be more cost-effective
than RT (e.g., [114], [150], [166]), with some observing
ART to require less time than RT to identify the first
failure (e.g., [40], [144]).

6.2 Other Testing Applications

A number of the surveyed studies considered ART as a
strategy to support another testing method, with a goal of
enhancing the effectiveness and applicability of that target
method. Fig. 11 shows that the most popular target testing
application is regression testing [167] (14%), followed by
combinatorial testing [168] (4%), software reliability test-
ing [169] (3%), fuzzing [170] (1%), integration testing [171]
(1%), and active testing [172] (1%).

6.2.1 Regression Testing

Adaptive random sequences [15] have been extensively applied
to regression testing, including for both prioritization and
selection [167]. Jiang et al. [42] first used adaptive random
sequences (obtained with FSCS [9]) to prioritize regression
test suites, proposing a family of approaches that use code
coverage to measure the distance between test cases. Other
studies [173]–[175] have also used code coverage to guide
test case prioritization, but with different distance measures
or different ART approaches. Jiang & Chan [176], [177]
proposed a family of novel input-based randomized local
beam search techniques to prioritize test cases. Chen et
al. [178] proposed a method using two clustering algorithms
to construct adaptive random sequences for object-oriented
software. Zhang et al. [179], based on work on string test
case prioritization [180], introduced a method to construct
adaptive random sequences using string distance metrics.
They later used a different distance metric, based on CP-
M [127], to propose another method for prioritizing test
cases [181]. Huang et al. [182] applied adaptive random
prioritization to interaction test suites for combinatorial test-
ing [168]. Zhou [183] used the same code coverage distance
information as Zhou et al. [52] to support regression test
case selection. Chen et al. [184] extracted tokens reflecting
fault-relevant characteristics of the SUT (such as statement
characteristics, type and modifier characteristics, and oper-
ator characteristics), and used these tokens to represent test
cases as vectors for prioritizing programs for C compilers.

Previous investigations have shown that although adap-
tive random sequences generally incur higher computation-
al costs than random sequences, they are usually significant-
ly more effective in terms of fault detection. Furthermore,
adaptive random sequences are also sometimes comparable
to test sequences obtained by traditional regression testing
techniques [185], in terms of both testing effectiveness and
efficiency.

6.2.2 Combinatorial Testing

Huang et al. [186] used two popular ART techniques (FSCS
and RRT) to construct an effective test suite (a covering
array [187]) for combinatorial testing [168]. Nie et al. [188]
investigated covering arrays constructed by RT, ART, and
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TABLE 6
Summary of Main ART Results for each Application Domain

Application Domain Original study Method Program Name %Effectiveness %Efficiency
Improvement Improvement

Numeric Programs

Chen et al. [32] FSCS

Airy 42.14%

NR

Bessj 41.83%
Bessj0 42.24%
Cel 47.55%
El2 52.02%
Erfcc 44.30%
Gammq 11.38%
Golden 1.67%
Plgndr 34.09%
Probks 45.25%
Sncndn 1.18%
Tanh 45.00%

Zhou et al. [52] MCMC-Random Testing
Bessel 93.02%
Ellint 28.28%
Laguerre 90.67%

Chen et al. [109] FSCS/ECP-FSCS*
Cubic 0.42% – 3.48%
Quadratic 0.20% – 4.95%
Tcas -1.99% – 4.72%

Walkinshaw and Fraser [138] FSCS

BesselJ 0.02%
Binomial 0.59%
DaysBetween -0.94%
DerivativeSin -2.21%
Erf -0.62%
Gamma -0.63%
PeriodToWeeks 8.84%
Romberg Integrator -0.19%

Object-Oriented Programs

Ciupa et al. [40] FSCS

Action sequence 91.49% -38.29%
Array 48.95% -527.46%
Arrayedlist 93.77% -7.71%
Boundedstack 20.91% -1017.90%
Fixedtree 28.01% 6.52%
Hashtable 78.74% -149.67%
Linkedlist 61.38% -442.39%
String 82.09% 41.07%

Lin et al. [114] FSCS

Math.geometry 87.36% 86.31%
Math.util 85.48% 99.05%
Lang 20.96% 64.87%
Lang.text 91.05% 89.78%
Collections.list 86.85% 87.05%
Siena 92.13% 82.80%

Chen et al. [144] FSCS + Forgetting

CCoinBox 2.46% – 63.83% -725.00% – -144.44%
Calendar 0.00% – 76.41% -210.53% – -13.46%
Stack 0.00% – 56.02% -230.86% – -63.41%
Queue 0.00% – 55.21% -118.67% – -5.81%
WindShieldWiper 5.11% – 67.36% -457.89% – -70.97%
SATM 4.99% – 62.28% -325.81% – -94.12%
BinarySearchTree 10.94% – 77.93% -428.24% – -93.53%
RabbitAndFox 0.56% – 76.30% -354.41% – -83.93%
WaveletLibrary 2.88% – 72.09% -153.24% – -3.53%
BackTrack 3.09% – 76.87% -128.57% – -1.05%
NSort 3.61% – 60.20% -593.75% – -126.53%
SchoolManagement 3.14% – 79.69% -510.53% – -109.64%
EnterpriseManagement 0.00% – 75.50% -233.64% – -80.30%
ID3Manage 14.66% – 70.58% -690.00% – -92.68%
IceChat 13.00% – 122.96% -463.93% – -26.47%
CSPspEmu 8.88% – 92.79% -169.94% – -25.36%
Poco-1.4.4: Foundation 6.72% – 86.12% -144.67% – -20.80%

Jaygarl et al. [150] FSCS

Apache Ant 58.16% 65.87%
ASM 85.99% 92.14%
ISSTA Containers 41.26% 43.82%
Java Collections 89.07% 98.76%

Configurable Systems

Huang et al. [151] FSCS

Count 11.16% – 21.41%

NR

Series 9.93% – 21.28%
Tokens 9.69% – 20.14%
Ntree 11.19% – 21.73%
Nametbl 9.03 – 20.91%
Flex 4.36% – 22.80%

Barus et al. [128]

Cal 31.91% – 87.05%
Comm 56.28% – 88.25%
Grep -114.76% – 72.60%
Look -133.58% – 58.40%
Printtokens 37.61% – 64.59%
Printtokens2 -17.69% – 65.36%

FSCS Replace -309.64% – 69.68%
FSCS + Mirroring Schedule -403.38% – 87.84%

Schedule2 -2365.22% – 80.29%
Sort -52.01% – 84.21%
Spline -207.42% – 79.68%
TCAS -129.07% – 65.74%
Totinfo -264.70% – 62.64%
Uniq -30.14% – 86.31%
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Application Domain Original study Method Program Name %Effectiveness %Efficiency
Improvement Improvement

Web Services and Applications Selay et al. [115] FSCS + Forgetting RWWA1-7 -2.22% – 16.16% -1.82% – 3.63%FSCS + Mirroring
Embedded Systems Iqbal et al. [106] FSCS IC 3.00%

NR

Simulation and Modelling Sun et al. [162] FSCS UAV 5.00% – 43.00%

Shahbazi and Miller [165]

Validation 4.50% – 94.60%
PostCode 22.10% – 137.00%
Numeric 43.20% – 458.00%
DateFormat 43.40% – 462.10%
MIMEType -19.30% – 12.00%

FSCS ResourceURL -17.20% – 15.60%
Other Domains (String Programs) GA URI -22.50% – -3.30%

Multi-Objective GA URN -47.60% – 15.60%
TimeChecker -27.40% – -0.60%
Clocale 38.30% – 321.00%
Isbn -28.20% – 65.60%
BIC 4.40% – 103.80%
IBAN 23.80% – 90.40%

Other Domains (SDN OpenFlow Switches) Koo and Park [166] FSCS Open vSwitch 66.67% 62.55%
*ECP-FSCS is Edge-Center-Partitioning based FSCS, which combines FSCS with static partitioning [109].

combinatorial testing, in terms of their ability to identify
interaction-triggered failures.

Overall, ART requires far fewer combinatorial test cases
to construct covering arrays than RT, and can also detect
more interaction-triggered failures for the same number of
test cases [186]. ART also performs comparably to tradi-
tional combinatorial testing, especially for identifying in-
teraction failures caused by a large number of influencing
parameters [188].

6.2.3 Reliability Testing

Liu and Zhu [189] used mutation analysis [23] to evaluate
the reliability of ART’s fault-detection ability by analyzing
the variation in fault detection, concluding that it is more re-
liable than RT. Cotroneo et al. [190] evaluated the reliability
improvement of two ART techniques, FSCS [9] and evolu-
tionary ART [105]: Based on the same operational profile, for
the same test budget, they found that ART had comparable
delivered reliability [3] to traditional operational testing. For
a given reliability level, however, for the same operational
profile, ART typically requires significantly fewer test input-
s, compared to traditional operational testing techniques.

6.2.4 Active, Fuzzing, and Integration Testing

Based on FSCS-ART [9], Yue et al. [191] proposed two
input-driven active testing approaches for multi-threaded
programs, with experimental evaluations indicating that the
proposed methods are more cost-effective than traditional
active testing. Similarly, Sim et al. [192] applied FSCS-ART
[9] to fuzzing the Out-Of-Memory (OOM) Killer on an
embedded Linux distribution, with results showing that
their ART approach for fuzzing requires significantly fewer
test cases than RT to identify an OOM Killer failure. Shin et
al. [193] proposed an algorithm based on normalized ART
for integration and regression tests of units integrated with
a front-end software module. The related simulation studies
showed that the proposed ART method could be useful for
the integration tests.

Summary of answers to RQ3:

1) ART has been applied in many different application
domains, including: numeric programs, object-oriented
programs, embedded systems, configurable systems, and
simulations and models. According to the surveyed
studies, ART generally has better testing effectiveness
than RT for most application domains (with respect to
various evaluation metrics, including the number of test
case executions necessary to identify the first failure).

2) ART has also been used to augment or enhance other
testing techniques, such as regression testing, combina-
torial testing, and reliability testing. Similarly, the ART
enhancement is generally better than the RT version.

3) For each application domain, while ART is generally
more effective than RT with respect to different evalu-
ation metrics, it may still be less cost-effective overall.
Nevertheless, some ART approaches do provide better
cost-effectiveness than RT.

7 ANSWER TO RQ4: HOW HAVE EMPIRICAL EVAL-
UATIONS IN ART STUDIES BEEN PERFORMED?
7.1 Distribution of Empirical Evaluations
Of the 140 primary studies examined, 131 (94%) involved
empirical evaluations. Fig. 12 shows the distribution of the
empirical evaluations in these 131 studies, with 58 papers
(44%) having only simulations, 53 (41%) only experiments
with real programs, and 20 (15%) containing both simula-
tions and experiments. It can be observed that the number
of studies containing only simulations is comparable to the
number with only experiments.

7.2 Simulations
Simulations that attempt to construct failures in the numeric
input domain to resemble real testing situations have fre-
quently been used to evaluate ART techniques. As discussed
by Chen et al. [108], three factors5 are typically considered
in the design of simulations: the dimensionality (d) of the
input domain; the failure rate (θ); and the failure pattern.
In spite of their popularity, simulations have limitations as

5. Simulations examining modeling or distance-calculation er-
rors [194] have also appeared, but are very rare.
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Fig. 12. Distribution of empirical evaluations.

evaluation tools, including that: (1) they are mostly only
used to simulate numeric input domains; (2) the assumed
failure patterns may not be realistic; and (3) simulations
that do account for test execution time often have very
similar execution times, which means that the simulations
are effectively comparing generation, rather than execution,
time, which may decrease their applicability in practice.

In general, primary studies involving simulations as-
sume the input domain D to be [0, 1.0)d — a unit hypercube
(each dimension of D ranging from 0.0 to 1.0). Excluding
those few studies using simulations for a special testing
environment (such as for combinatorial testing [168]), 73 of
the 78 papers involving simulations used numeric input do-
mains. In this section, we review these 73 studies according
to the three main simulation design factors (d, θ, and the
failure pattern).

7.2.1 Dimensionality Distribution
Fig. 13 shows the input domain dimensionality (d) distribu-
tion across the 73 primary studies. It can be observed that
d ranges from 1 to 15, with d = 2 being the most popular
(96%), followed by d = 3 (42%), d = 4 (32%), and d = 1
(27%). Only a maximum of four papers (5%) involved each
d greater than 4. In other words, most simulations have
been conducted in low dimensional (d ≤ 4) numeric input
domains.

7.2.2 Failure Rate Distribution
Of the 73 primary studies involving simulations, 70 sim-
ulated failures in the input domain. Among these 70, the
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Fig. 13. Input domain dimensionality distribution.
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Fig. 14. Distribution of failure rates.

maximum failure rate (θH ) used was 1.0, and the minimum
(θL) was 1.0 · 10−5. Fig. 14 shows the distribution of lowest
simulation failure rates (θL) across these 70 papers: As
shown in Fig. 14, more than half of the simulations involved
a minimum failure rate of either 1.0 · 10−3 (24 papers: 34%)
or 5.0 ·10−4 (15 papers: 21%). The next two most commonly
used θL values are 5.0 · 10−5 (17%), and 1.0 · 10−4 (7%).
In total, only one paper had θL = 1.0 · 10−5, indicating
that the failure rates used in simulations have not been very
low. This lack of simulation data for very low failure rates
contrasts with Anand et al.’s report that “lower failure rates
are actually favorable scenarios for ART with respect to F-
measures” [18]. Thus, it would be interesting and worth-
while to conduct more simulations involving lower failure
rates to better evaluate ART performance.

7.2.3 Failure Pattern Distribution

Of the 73 primary studies involving simulations, 69 in-
volved specific failure pattern designs, which, according to
a simple classification, can be categorized as either regular
or irregular shapes [195], [196]. As shown in Fig. 15, all
69 papers (100%) included regular shapes that, in a two-
dimensional input domain (d = 2)6, could be described as:

6. For ease of description, the failure patterns in Fig. 15 focus on two-
dimensions, but the categories are similar for higher d: For example,
when d = 3, a square becomes a cube, and a circle becomes a sphere.
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Fig. 15. Distribution of failure patterns.
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square, rectangle, strip7, circle, ellipse, or triangle. Only two
papers (3%) used irregular shapes [195], [196], constructed
by combining between two and five regular shapes.

Fig. 15 shows that all 69 papers (100%) had simulations
involving a single region, and 42 papers (61%) also inves-
tigated multiple regions. The most popular shape used in
single-region simulations was the square (93%), followed
by strip (43%), rectangle (23%), and circle (9%); both triangle
and ellipse were used in only one primary study (1%) each.
In simulations with multiple failure regions, most studies
used equal circles (36% of the 69 papers), equal squares (17%),
different squares8 (9%), or other (equally-sized) shapes9 (7%).

As shown in Fig. 15, there are many types of failure
patterns. Fig. 16 presents how many failure pattern types
were used in the 69 studies involving failure patterns. Half
of the papers examined three types, followed by one (34%),
four (10%), and two types (4%). Only one paper (2%) looked
at five types of failure pattern in the simulations [108]. A
conclusion from this analysis is that many studies have
not designed the simulations comprehensively enough to
accurately evaluate ART.

7.3 Experiments with Real Programs

In this section, we summarize some details about the ART
experiments involving real programs.

7.3.1 Subject Programs
We collected the details of each subject program used in
the ART experiments, including its name, implementation
language, size, description, and references to the primary
studies that reported results for that program. This informa-
tion is summarized in the appendix, in Table A.1 — “NR”
indicates that some details were not reported in the original

7. The rectangle type is a special case of the strip type, with the main
difference being that each side of the rectangle type is parallel to the
corresponding dimension of D, but strips are not necessarily so, and
may not be parallelograms [22].

8. Previous studies [108] designed a predominant region by assigning
q% of the failure region to one square (e.g., q may be equal to 30, 50,
or 80), with the other squares sharing the remaining percentage of the
failure region in a random manner.

9. The unknown shapes refer to situations where the shape details
were not provided.
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Fig. 16. Distribution of failure pattern types.
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Fig. 17. Programming language distribution of subject programs.

paper. For ease of illustration, we ordered the programs
according to the number of references (the last column),
listing the most studied ART subject programs at the top
of the table.

In total, as can be seen from Table A.1, 211 subject
programs were found, ranging in size from 8 to 4,727,209
lines of code. Fig. 17 shows the distribution of program-
ming languages used to implement the programs. It can be
observed that most programs were written in C/C++ (36%)
and Java (33%), followed by C# (9%).

7.3.2 Types of Faults

The testing effectiveness of ART is generally evaluated
according to its ability to identify failures caused by faults in
the subject programs. Because actual defects are not always
available in real programs, artificially faulty programs, in
the form of mutants, are often used. The mutants can be
created manually, or with an automatic mutation tool [23].
Similar to previous surveys [26], we investigated the rela-
tionship between artificial and real faults in the empirical
evaluations of ART by calculating the cumulative number
of primary studies using each, as shown in Fig. 18. It can
be seen that the first study involving artificial faults was
reported in 2002, while the first with real faults was in
2008. Furthermore, although both studies with artificial and
real faults are increasing, the rate of increase for artificial
faults is much higher than that for real faults. By the end of
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Fig. 18. Real versus artificial faults.
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2017, more than 55 primary studies had used artificial faults,
compared with only 12 identifying real faults, indicating
that relatively few studies have used ART to detect real
bugs. Nevertheless, the number of ART studies detecting
real faults has been increasing.

7.3.3 Additional Information used to Support ART
ART uses information from previously executed tests to
guide generation of subsequent test cases to achieve an
even-spreading over the input domain. Each test case con-
tains some intrinsic information: A test case (0.5, 0.5), for
example, is a point in a 2-dimensional input domain, with
intrinsic information represented by its location; another test
case, “xyz”, is a list of characters whose intrinsic information
is represented by a string. In addition to a test case’s intrinsic
information, some further information may also be available
that can be extracted and applied to support ART execution.
In this section, we review some additional information
obtained from the ART studies.

Most studies made some use of white-box information
(including branch coverage, statement coverage, and muta-
tion score) to guide test case generation. Several studies [42],
[174], [183] have used branch coverage information, but
have adopted different representations. For a given SUT
with a list of β branches, denoted BR = {br1, br2, · · · , brβ},
a test case tc could cover a set of these branches, denoted
BR(tc), where BR(tc) ⊆ BR. Some previous studies [174],
[183] have used a binary vector (x1, x2, · · · , xβ) where each
element xi (1 ≤ i ≤ β) represents whether or not the branch
bri is covered by tc: if bri is covered, then xi = 1, otherwise
xi = 0. This information can also be represented by a set
of branches [42], i.e., BR(tc). Zhou et al. [173] also used
a test vector based on branch information (y1, y2, · · · , yβ),
however, each element yi (1 ≤ i ≤ β) in their vector
represents the number of times that bri is covered by tc.
Jiang et al. [42] used sets of statements or methods for each
test case. Both Hou et al. [41] and Sinaga et al. [175] used the
program path to represent each test case by constructing a
Control Flow Graph (CFG) [197] for the program.

Tappenden and Miller [153] also used a binary vector
for individual test cases to represent the existence (or lack)
of certain cookies within a global cookie collection. Patrick
and Jia [198], [199] used mutation scores to construct a prob-
ability distribution for test case selections. Some previous
studies [155]–[158] have described test cases using UML
state machine test paths, considering each test path as either
a set or sequence. Iqbal et al. [106], using the same UML
state machine as in other studies [155]–[158], used a test
data matrix to represent test cases. Matinnejad et al. [159]
represented test cases using a sequence of signals that could
be described as a function over time; and Liu et al. [116] rep-
resented test cases with an event sequence. Indhumathi and
Sarala [200] used .NET Solution Manifest files to generate
test case scenarios, each one producing at least one test case.
Nikravan et al. [201] applied the path constraints of input
parameters to support ART. Nie et al. [91] enhanced ART
testing effectiveness through the use of I/O relations. When
testing C compilers, where each test case was a C program,
Chen et al. [184] counted the occurrence of certain tokens
in each program, constructing a numeric vector to represent
each test case. Hui and Huang [202] applied metamorphic

relations to support ART test case generation, and Yuan et
al. [203] have incorporated program invariant information
into ART.

7.4 Evaluation Metrics

Various metrics have been used to evaluate the testing effec-
tiveness and efficiency of ART approaches. In this section,
we review those metrics used in the primary studies.

7.4.1 Effectiveness Metrics
The effectiveness metrics, which are used to evaluate the
effectiveness of ART techniques, can be classified into
three categories: fault-detection; test-case-distribution; and
structure-coverage.

1) Fault-detection metrics: These metrics assess the fault-
detection ability of ART, and include the F-measure [204],
E-measure [205], and P-measure [205]. The F-measure is the
expected F-count [206] (the number of test cases required to
detect a failure in a specific test run); the E-measure refers
to the expected number of failures to be identified by a set
of test cases; and the P-measure is the probability of a test
set identifying at least one program failure. Liu et al. [207]
proposed a variant of the F-measure, the Fm-measure, which
they defined as the expected number of test cases required
to identify the first m failures. These metrics may have
different application environments: the E-measure and P-
measure, for example, are appropriate for the evaluation of
automated testing systems [73]; while the F-measure is more
realistic for situations where testing stops once a failure is
detected.

In addition to these three metrics, another widely-used
one is the fault detection ratio, which is defined as the ratio of
faults detected by a test set to the total number of faults
present [185]. It should be noted that in the context of
artificial faults (mutants), the fault detection ratio can be
interpreted as the mutation score [23].

2) Test-case-distribution metrics: These metrics are used to
evaluate the distribution of a test set, i.e., how evenly spread
the test cases are. For ease of description in the following,
assume a test set T = {tc1, tc2, · · · , tcn}, of size n, from
input domain D.

• Discrepancy [31]: The definition of discrepancy was
given in Eq. (5.1).

• Dispersion [31]: The dispersion of T is calculated as
the maximum distance among all pairs of nearest
neighbor distances. Its definition is:

Dispersion(T ) = max
1≤i≤n

min
1≤j ̸=i≤n

dist(tci, tcj). (7.1)

• Diversity [83], [84]: The diversity is similar to the
dispersion, but uses the sum (not maximum) of all
nearest neighbor distances. Its definition is:

Diversity(T ) =
∑

1≤i≤n

min
1≤j ̸=i≤n

dist(tci, tcj). (7.2)

• Divergence [114]: Similar to diversity, divergence [114]
is defined as:

Divergence(T ) =
∑

1≤i≤n

∑
1≤j≤n

dist(tci, tcj). (7.3)
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• Spatial distribution [31], [82], [87], [104], [117]: This
refers to the position of each test case over the entire
input domain D, and can only be used for numeric
input domains. The most intuitive version of spatial
distribution depicts the locations of test cases: Mayer
and Schneckenburger [82], for example, recorded the
locations of the i-th test case in a 2-dimensional
input domain using 10 million test sets, generating a
picture of pixels. However, each picture only shows
up to the i-th test case, and their method cannot
depict spatial distributions for input domains with
more than three dimensions. Some methods have
tried to project the test case positions onto a single
dimension: Chen et al. [117], for instance, projected
test cases from T onto one dimension (the x-axis),
dividing it into 100 equally-sized bins. The number
of test cases within each bin was then counted, and
the spatial distribution of T was thus described with
a histogram.
Other methods have described the spatial distribu-
tion of T by dividing D into a number of equally-
sized, disjoint subdomains, from D’s edge to its
centre: Chen et al. [31], for example, partitioned D
into two subdomains, the edge and center regions,
defining a new measure of spatial distribution as:

Edge : Center =
|TEdge|
|TCenter|

, (7.4)

where TEdge and TCenter are the sets of test cases
from T located in the edge and center regions, re-
spectively. Chen et al. [87] also partitioned D into
128 subdomains, and analyzed the frequency dis-
tribution of test cases in each subdomain. Similarly,
Mayer and Schneckenburger [104] dividedD into 100
subdomains, and formalized the relative distance of
a test case tc ∈ T to the center of D:

distmax(c, tc) = max
i=1,2,··· ,d

|ci − tci|, (7.5)

where c is the center ofD, and d is its dimensionality.
3) Structure-coverage metrics [208]: These metrics, which

make use of structural elements in the SUT, have been wide-
ly used in the evaluation of many testing strategies. Among
them, two popular categories are control-flow coverage [112]
and data-flow coverage [111]. Control-flow coverage focuses
on some control constructs of the SUT, such as block, branch,
or decision [112]. Data-flow coverage, in contrast, checks
patterns of data manipulation10 within the SUT, such as
p-uses, c-uses, and all-DU-paths [111]. These metrics have
also been used to evaluate (fixed-size) test sets generated
by ART.

7.4.2 Efficiency Metrics
There have generally been two metrics used to evaluate the
testing efficiency of ART: the generation time, and the execu-
tion time. The generation time reflects the computational cost

10. Patterns of data manipulation refer to the definition of some data
(def, where values are assigned to the data), and its usage (use, where the
values are used by an operation). Additionally, use can be categorized
into c-use (where data are used as an output or in a computational
expression), and p-use (where data appears in a predicate within the
program) [111].
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Fig. 19. Application of evaluation metrics.

of generating n test cases; while the execution time refers to
the time taken to execute the SUT with n test cases. On the
one hand, because RT has fewer computations involved in
the test case generation, it is intuitive that it should have
a much lower generation time than ART: Given the same
amount of time, RT typically generates more test cases than
ART. On the other hand, the variation in execution time
depends mainly on the SUT.

7.4.3 Cost-Effectiveness Metric
The F-time [61] is defined as the running time taken to find
the first failure. Suppose the testing process requires n test
cases to identify the first failure (i.e., the F-measure is equal
to n), then the F-time comprises the generation time for
these n test cases, and the execution time for running them
on the SUT. The F-time, therefore, not only shows the testing
efficiency of ART, but also reflects its effectiveness: it is a
cost-effectiveness metric [18].

7.4.4 Application of Evaluation Metrics
Fig. 19 presents the frequency of each applied metric from
the 131 primary studies involving empirical evaluations.

Among the effectiveness metrics, the fault-detection met-
rics were the most used, followed by test-case-distribution
metrics. Very few studies used the structure-coverage met-
rics. The majority of papers (73%) used the F-measure to
evaluate ART fault-detection effectiveness, followed by the
fault detection ratio (15%), and the P-measure (11%). Only
one paper (1%) used the E-measure, which reflects one of its
main criticisms: that higher E-measures do not necessarily
imply more distinct failures or faults [32].

Regarding the efficiency metrics, 21% of the 131 papers
used the generation time, whereas only 1% used the exe-
cution time. Finally, about 8% of the studies adopted the
F-time as the cost-effectiveness metric.

7.5 Number of Algorithm Runs
To accommodate the randomness in test cases generated by
both RT and ART, empirical evaluations require that the
techniques be run in an independent manner, a certain num-
ber of times (called the number of algorithm runs, S) [209].
In this section, we analyze the number of algorithm runs
used in each study11. Because some studies involving exper-

11. If a paper used different numbers of algorithm runs in different
empirical studies, the minimum number was selected for S.
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(b) Experiments with real programs.

Fig. 20. Distribution of the number of algorithm runs reported in the empirical studies.

iments may have had practical constraints (such as limited
testing resources), to present the results in an unbiased way,
we investigated the numbers of algorithm runs for both
simulations and for experiments with real programs.

Fig. 20 presents the paper classification based on the
number of algorithm runs reported, with Fig. 20(a) showing
the distribution of the 78 studies with simulations, and
Fig. 20(b) showing the 74 studies involving experiments.
According to the Central limit theorem [210], to estimate the
mean of a set of evaluation values (such as F-measures),
with an accuracy range of ±r and a confidence level of
(1− α)× 100%, the size of S should be at least:

S =

(
100 · z · σ

r · µ

)2

, (7.6)

where z is the normal variate of the desired confidence level,
µ is the population mean, and σ is the population standard
deviation.

As shown in Fig. 20(a), other than 5% of papers with
S ≤ 100, and 9% “Not reported”, all other simulation
papers used either a value of S determined by the central
limit theorem (28%), or had at least 1, 000 algorithm runs
(58%). Most studies determined S based on the central limit
theorem, followed by S = 5, 000 (17%), 10, 000 (14%), and
50, 000 (11%). On the other hand, as shown in Fig. 20(b),
about 46% of papers involving experiments had 100 or less
algorithm runs (S ≤ 100), followed by 19% with 1, 000 or
more (S ≥ 1, 000). Only 13% of experiment papers used
a value of S calculated using the central limit theorem.
According to Arcuri and Briand’s practical guidelines [209],
algorithms involving randomness should be run at least one
thousand times (S = 1, 000) for each artifact (exceptions be-
ing for heavy time-consuming SUTs, such as embedded sys-
tems [106], [155]–[158]). Therefore, while overall the number
of algorithm runs for ART simulations was sufficient, it
appears that the number of runs in some studies involving
experiments was not.

7.6 Statistical Significance

One of the initial motivations behind developing ART was
to enhance the testing effectiveness of RT. It is natural, there-
fore, to compare each new ART technique with RT, in terms
of testing effectiveness. As already discussed, because test
cases generated by both RT and ART contain randomness,
it is necessary to determine the statistical significance of any
comparison [209]. Statistical tests can, amongst other things,
determine whether or not there is sufficent empirical evi-
dence to support, with a high level of confidence, that there
is a difference between the performance of two algorithms
A and B. Furthermore, whenA does outperform B, it is also
important to quantify the magnitude of the improvement. In
this section, we report on the application of statistical tests
in the empirical evaluations of the ART studies.

Of the 78 primary studies involving simulations, only
four papers (5%) used statistical tests. However, of the 73
papers with experiments, 26 (36%) examined the statistical
significance when comparing two techniques, with the most
used statistical tests being: the t-test; the Mann-Whitney U-
test; ANalysis Of VAriance (ANOVA) test; and Z-test [209]. The
effect size was the statistic most often used to measure the
magnitude of improvements [209], with two papers using
it for simulations [73], [105], and six including it for exper-
imental data [73], [158], [159], [165], [198], [199]. The two
main approaches used to calculate the effect sizes are from
the work of Cohen [211], and Vargha and Delaney [212].

In summary, it appears that relatively few ART empir-
ical studies have used sufficient and appropriate statistical
testing.
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Summary of answers to RQ4:

1) Studies involving simulations generally focused on the
dimensionality of the input domain, the failure rate, and
the failure pattern. However, many of these simulations
appear not to have been comprehensively designed, and
thus may not be accurate evaluations of ART.

2) The results of the experiments with real programs were
influenced by both the subject programs themselves, and
the types of faults. It was also noted that, so far, papers
reporting the detection of real faults still represent only
a small proportion of all empirical studies.

3) The F-measure (number of test case executions required
to detect the first failure) was the most popular met-
ric for evaluating ART testing effectiveness; test case
generation time was the most widely-used for testing
efficiency; and F-time (execution time required to detect
the first failure) was the most commonly used for cost-
effectiveness.

4) Overall, the number of algorithm runs was sufficient
in simulations, but inadequate for the experiments with
real programs. Furthermore, only a small proportion of
empirical studies used statistical tests.

8 ANSWER TO RQ5: WHAT MISCONCEPTIONS
SURROUNDING ART EXIST?
During the development of ART, a number of misconcep-
tions and misunderstandings have arisen, leading to con-
fusion or incorrect conclusions. Some misconceptions have
been discussed previously [18], indicating that they have
existed for multiple potential ART users, especially those
just beginning to apply it. Two main misconceptions are
discussed in this section.

8.1 Misconception 1: ART is Equivalent to FSCS
Anand et al. [18] noted that, because FSCS was the first
published ART algorithm [9], many studies have presented
FSCS as being ART, or being equivalent or exchangeable.
As discussed in Section 5, FSCS is an ART implementation
belonging to the STFCS category, and there are many other
STFCS implementations. There are also other ART imple-
mentation categories. ART refers to a family of testing ap-
proaches in which randomly-generated test cases are evenly
spread over the input domain [15]. FSCS is only one of
many ART algorithms, and hence ART and FSCS are not
equivalent.

8.2 Misconception 2: ART Should Always Replace RT
Although RT requires very little information when testing,
ART does make use of additional information (such as
locations of previously executed test cases) to guide the
test case generation. It may, therefore, seem reasonable that
ART should always be better than RT, and thus always
replace it. From the perspective of testing effectiveness,
however, Chen et al. [108] found that ART’s effectiveness is
influenced by many factors, including the failure rate, fail-
ure pattern, and dimensionality of the input domain. They
identified several favorable conditions for ART, including a
small failure rate, a low dimensionality, a compact failure

region, and a small number of failure regions. Furthermore,
because different approaches to achieve an even spread of
test cases have resulted in different ART implementations,
each implementation also has its own relative advantages
and disadvantages (resulting in favorable and unfavorable
conditions for its application). In other words, there are
situations where ART can have similar, or even worse,
testing effectiveness compared to RT. In terms of testing
efficiency, compared with RT, in spite of several overhead-
reduction algorithms [56], [73], [123], [126], ART still incurs
more computational overheads. Consequently, even though
ART may have better testing effectiveness than RT, there
needs to be a balance between effectiveness and efficiency
when choosing either RT or ART: If the ART test case
generation time is considerably less than the test setup and
execution time, then it would be appropriate to replace RT
with ART; otherwise, RT may be more appropriate [18].
Nevertheless, it should be feasible to use ART rather than RT
as a baseline when evaluating the state-of-the-art techniques
for test case generation, especially from the perspective of
testing effectiveness.

Summary of answers to RQ5:

• Two main misconceptions exist in much of the literature:
that ART is equivalent to FSCS; and that RT should
always be replaced by ART.

9 ANSWER TO RQ6: WHAT ARE THE REMAINING
CHALLENGES AND OTHER FUTURE ART WORK?
A number of open ART research challenges remain, requir-
ing further investigation and additional (future) work.

9.1 Challenge 1: Guidelines for Simulation Design
Although simulations may have limitations compared with
real-life programs (because they may not easily and accu-
rately simulate real-world environments, especially com-
plex ones), they are indispensable in the field of ART re-
search. For any given SUT, the fault details — including
the size, number, location, and shape of failure regions —
are fixed (but unknown) before testing begins. Intuitively,
therefore, it is reasonable that studies attempt to simulate
faults by controlling and adjusting the factors that cre-
ate different failure patterns (resulting in different faults).
Although some such simulated faults may seldom occur
in real-world programs, they may nonetheless be repre-
sentative of potential real-world situations, especially for
numeric programs. Furthermore, for a number of reasons,
it can be challenging to obtain real-world faulty programs:
their existence or availability, for example, may be limited
Simulations, therefore, can be used to compensate for this
lack of appropriate real-world programs.

As discussed in Section 7, many studies (58 papers) have
used simulations to evaluate ART, and different papers may
have different simulation designs. However, these studies
only simulated numeric and configurable programs. Fur-
thermore, there is a lack of reliable guidelines regarding
simulation design, especially from the perspective of those
factors that influence ART effectiveness (such as the fail-
ure rate and failure pattern details). The existence of such
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guidelines could help testers when choosing simulations for
experimental evaluations.

9.2 Challenge 2: Extensive Investigations Comparing
Different ART Approaches
As discussed in Section 7, although many ART studies are
based on simulations and experiments with real programs,
all studies have used simulations with failure rates greater
than 10−6, and very few [122], [134] have used experiments
with failure rates less than 10−6 [18]. Similarly, few studies
have investigated the favorable and unfavorable conditions
for each ART approach [108]. Furthermore, only a very
limited number of studies have used statistical testing with
a sufficient number of algorithm runs to evaluate ART. It is
therefore necessary to more fully and extensively investigate
and compare the different ART approaches. This investiga-
tion and comparison needs to address not only the strengths
and weaknesses of each ART approach, but should also seek
to confirm those theoretical results not yet empirically sup-
ported (including, as discussed in Section 5.7.1, the potential
for ART to support software reliability estimation).

9.3 Challenge 3: ART Applications
As discussed in Section 6, ART has been used to test many
different applications. Although ART could theoretically be
applied to test any software applications where RT can be
used, there remain some applications that have only been
tested by RT, such as SQL database systems [6]. It will
therefore be interesting and significant to apply ART to these
domains. Furthermore, to date, only those ART approaches
using the concept of similarity, such as STFCS and SBS, have
been used in different applications — other approaches,
such as PBS and QRS, have mainly been confined to numeric
input domains. It will therefore also be important to apply
more different ART approaches to different applications.

A goal of ART is to achieve an even-spreading of test cas-
es over different input domains (including nonnumeric in-
put domains). Unlike numeric input domains, nonnumeric
domains cannot be considered Cartesian spaces, making vi-
sualization of test input locations and failure pattern shapes
infeasible. A key requirement for the application of ART in
nonnumeric input domains, therefore, is the availability of a
suitable dissimilarity or distance metric to enable comparison
of the nonnumeric inputs. Consider, for example, a program
that checks whether or not an input string of the form
“YYYY-MM-DD” is a valid date: Given three potential string
input tests — tc1 = “2019-01-31”, tc2 = “2019-01-3X”,
and tc3 = “1998-12-24” — some string dissimilarity metrics
(e.g., Hamming distance, Levenshtein distance, and Manhattan
distance) may indicate that tc3 is farther away from tc1 than
from tc2 [165]. However, while both tc1 and tc3 are valid
inputs, tc2 is invalid, and is thus likely to trigger different
behavior and output. If different test inputs trigger different
functionalities and computations, they are also likely to
have different failure behavior (including detecting or not
detecting failures), which means that they are dissimilar
to each other. This suggests that it would be desirable to
incorporate the semantics of nonnumeric inputs into their
dissimilarity metrics. If a dissimilarity metric exists that
accurately captures the semantic differences between test

cases (based on functionality and computation), then ART
should be considered.

9.4 Challenge 4: Cost-effective ART Approaches

ART cost-effectiveness is critical for real-life applications,
and a number of approaches to reduce the computational
overheads while attempting to maintain testing effective-
ness have been proposed [55]–[57], [73], [92], [123], [126],
[128]. However, some approaches are only applicable to
numeric inputs [55]–[57], [73], [92], using the location infor-
mation of disjoint subdomains to enable their division. The
main obstacles to applying these cost-reduction techniques
to nonnumeric domains include: (1) how to partition a
nonnumeric input domain into disjoint subdomains; and (2)
how to represent the “locations” of these subdomains.

ART based on the concept of mirroring (MART) [55]–
[57], [92] first partitions the numeric input domain into
equally-sized, disjoint subdomains, designating one as the
source subdomain and others as mirror subdomains. A mapping
relation is used to translate test cases between the source do-
main and each mirror domain. For example, consider a two-
dimensional input domain D, divided into four equally-
sized subdomains, D1, D2, D3, and D4. Without loss of
generality, assuming that D1 is the source subdomain, and
the others are mirror subdomains, then once a new test
case is generated in D1 using ART (e.g., FSCS or RRT), a
mapping relation between D1 and Di (i = 2, 3, 4) maps
the test case to three other test cases in D2, D3, and D4.
Although, intuitively speaking, subdomain locations can
only be visualized/identified in a numeric input domain,
not in a nonnumeric one, if partitioning and subdomain
location assignment can be applied to nonnumeric input
domains, then MART can be used.

While other overhead-reduction approaches [126], [128]
may be applied to both numeric and nonnumeric input do-
mains, they may also involve discarding some information,
which may decrease their testing effectiveness. It is therefore
necessary to investigate more cost-effective ART approaches
for different applications.

9.5 Challenge 5: Framework for Selection of ART Ap-
proaches

A framework for the selection of an ART approach could
help guide testers to apply ART in practice, especially
when facing a choice among multiple approaches. Anand
et al. [18] discussed two simple application frameworks, but
only at a very high level, and a lot of technical details remain
to be determined. The framework design will also need to
address the favorable and unfavorable conditions for each
ART approach, as identified in the various studies.

9.6 Challenge 6: ART Tools

Although many approaches have been proposed for ART,
there are very few tools [40], [73], [114], [144], [150], some
of which are: AutoTest, which supports ART for object-
oriented (ARTOO) programs written in Eiffel [40]; ARTGen,
which supports divergence-oriented ART for Java program-
s [114]; Practical Extensions of Random Testing (PERT), which
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supports testing for various input types [150]; and OMISS-
ART, which supports FSCS for C++ and C# programs.
However, these tools are not publicly available. The only
publicly available tool [213], was developed to support
FSCS, RRT, evolutionary ART, RBCVT, and RBCVT-Fast [73],
but this can only be used for purely numeric input domains.
Currently, testers wanting to use ART have to implement the
corresponding algorithm themselves. There is, therefore, a
desire and need to develop and make available more ART
tools to support both research and actual testing.

Summary of answers to RQ6:

• Six current challenges have been identified for ART that
will require further investigation. These are the current
lack of: (i) guidelines for the design of ART simulations;
(ii) extensive investigations comparing different ART
approaches; (iii) ART applications; (iv) cost-effective
ART approaches; (v) a framework for the selection of
ART approaches; and (vi) ART tools.

10 CONCLUSION

In this article, we have presented a survey covering 140
ART papers published between 2001 and 2017. In addition
to tracing the evolution and distribution of ART topics, we
have classified the various ART approaches into different
categories, analyzing their strengths and weaknesses. We
also investigated the ART application domains, noting that
it has been applied in multiple domains, and has been inte-
grated with various other testing techniques. Furthermore,
we have identified that different types of failure patterns
have been used in the various reported simulations, and that
there has been an increasing number of real faults detected
and reported. Finally, we discussed some misconceptions
about ART, and listed some current and future ART chal-
lenges requiring further investigation. We believe that this
article represents a comprehensive reference for ART, and
may also guide its future development.
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